ILERI SEYISAL SISTEMLER

1- Sayisal Sistemler ve FPGA

Ders sorumlusu:

Do¢. Dr. Hasan KOYUNCU

1. SRYISAL SISTEMLER VE FPGA

= FPGA; “Sahada Programlanabilir Kapi Dizileri” anlamina gelen “Field
Programmable Gate Array” ifadesinin kisaltmasidir.

= FPGA, retimden sonra istenen
fonksiyona gore donanim yapist kullanici
tarafindan degistirilebilen entegre
(biitiinlesmis) devre olarak tanimlanar.

= Herhangi bir uretim alaninda
kullanilmas1 planlanan bir iirtiniin,
uretimden onceki prototipleme ve test
islemler1 gibi bircok islemi FPGA’ler
tarafindan gerceklestirilir.

1. SRYISAL SISTEMLER VE FPGA

= Bu aygitlar; bir elektronik tansiyon aletinin kontrol entegresinden dijital
kol saatinin islemcisine, ses anfisinin sayisal entegresinden cep
telefonlarindaki islemciye kadar c¢ok genis bir alanda kullanmilabilir
ozellikleriyle 6n plandadir.

= FPGA’ler; yerine gore bir mikroislemci gibi, bir
sifreleme iinitesi gibi veya bir grafik karti gibi
islem gorebilmektedir.

= Hatta bu ii¢ islemin ayni anda ¢calisabilecegi bir
sistemin parcgasi da olabilir.

= Guiniimiizde 1ler1 teknoloji tirtinti olarak akla gelen
neler varsa tamaminin gelisim siiregler1 FPGA’ler
ile saglanmastr.

1. SRYISAL SISTEMLER VE FPGA

= Giiniimiizde Onemli gomili sistem entegreler1 olarak gorilen ARM
mikrodenetleyicileri FPGA’ler lizerinde gelistirilmistir.

= GOomiili sistem teknolojileri kapsamina giren mikrodenetleyici, mikroislemci
ile ASIC ad1 verilen 6zel amaclar i¢in tasarlanan entegre devrelerin FPGA’den

farkliliklarinin bilmesi gereklidir.

1.1 FPGA ile ASIC (Uygulamaya Ozel Entegre Devre)
Karsilastirmasi

= ASIC, 0zel wuygulamalar i¢in gelistirilen
timlesik bir devredir. Sayisal devrelerin yaninda
istenirse analog devreler ve alici-verici devreleri

icebilir.

*Ornegin; telefonun
icindeki islemci veya
camaswr makinesindeki
kontrol devresi bir
ASIC olarak 1slev gortir.

©

= Tek bir amac icin tasarlanan ASIC’ler omiirleri
dolana kadar bu isi yaparlar.

1.1 FPGA ile ASIC (Uygulamaya Ozel Entegre Devre)
Karsilastirmasi

= Yapilar itibari ile silikon seviyede olduklarindan dolay: islevieri kesinlikle
degistirilemez.

Oksijen Olgiim Aleti

1.1 FPGA ile ASIC (Uygulamaya Ozel Entegre Devre)
Karsilastirmasi

= ASIC’lerin FPGA’ler ile benzer yoni 1se mantiksal devre tasarimlarinin
VHDL veya Verilog tarzi dillerle gelistirilmesidir.

Oksijen Olgiim Aleti

1.1 FPGA ile ASIC (Uygulamaya Ozel Entegre Devre)
Karsilastirmasi

= Ancak ASIC yapilariin tretimi gergeklestirildikten sonra tasarimlarinda
bir hata tespit edilirse, biitiin iiretimlerin yeniden toplanmasi ve yeni
iiretimlerin piyasaya siiriilmesi gerekir.

Buzdolab1 Kontrol Karti

Oksijen Olgiim Aleti

1.1 FPGA ile ASIC (Uygulamaya Ozel Entegre Devre)
Karsilastirmasi

= Gii¢ tiiketimi a¢isindan FPGA’lere gore daha az enerji harcayip daha az yer
kaplamakta ve daha hizli islem yapabilmektedir.

= Tasarim maliyetleri a¢isindan daha avantajli hale gelebilmeleri i¢in ayni
ASIC devreden milyonlarca basiimalidr.

= ASIC devrelerinin FPGA’lerden en onemli farki; islevlerinin iretim
sonrast degistirilememesi, yani yeniden programlama opsiyonlarinin
bulunmamasudr.

= ASIC tasarimlar1 genelde FPGA izerinde gerceklestirilmekte,
fonksiyonellik ve performans test edilmekte, sonrasinda tasarlanan

sayisal devre ASIC olarak gerceklenmektedir.

1.2 FPGA ile Mikrodenetleyici Karsilastirmasi

= Mikrodenetleyiciler, belirli i1slevler i¢in entegre devrelerle giiclendirilmis
mini bir bilgisayar gibidir.

= FPGA’lere gore daha az elektrik
titketmekte ve daha ucuza iiretilmektedir.

= Hem mikrodenetleyicilerde hem de
FPGA’lerde belli amaclar icin kod
yazilarak bir cipe aktarir.

: = Mikrodenetleyiciler hazir devreler :

| izerinden bu 1slemi ger¢eklestirirken, Bi
o T EemRe %0 Wl KR N s Nl e

FPGA’lerde tim i1slemlerin ayrt ayri
kodlanmas: gerekir.

1.2 FPGA ile Mikrodenetleyici Karsilastirmasi

= Bir diger fark 1se komutlarin 1slenme bigiminde saklidir.

= Mikrodenetleyiciler komutlart satir satir islerken, FPGA’ler ayni anda
birden fazla satir komutu isleyebilmektedir. Bu durum FPGA’ler ve

mikrodenetleyiciler arasindaki en onemli ayrimdir.

1.3 FPGA ile Mikroislemci Karsilastirmasi

= FPGA’ler gerekli talimatlari, tasarimlarinin dogas1 geregi paralel olarak
gerceklestirme imkdnina sahiptir. Belirli program parcalart ile swrayla
(ardisil, sequential) kod isleme yetisi de mevcuttur.

= Mikroislemcilerde ise komutlarin sirayla isletilmesi gereklidir.

©

1.3 FPGA ile Mikroislemci Karsilastirmasi

= FPGA temelli bir tasarimin gelistirme siireci, mikrodenetleyici veya
mikroigslemci i¢eren bir sistem tasarimindan uzun zaman almaktadir.

= Ancak bu durum, FPGA’lerin ham hali ile
tasarimciya sunulmasindan kaynaklidir.

= Bir FPGA 1izerinden bir mikrodenetleyici veya
bir mikroislemci tasarlanabilmesine ragmen, tersi
durum soz konusu degildir.

= Tasarim veya programlama agisindan inceleme yapilirsa, mikroislemcilere
dair komut kiimeleri mevcuttur ve bu bilgiler islemcinin belleginde saklidr.

= Komutlar isletilirken bu bellek devreye alinir.

()

1.3 FPGA ile Mikroislemci Karsilastirmasi

= FPGA’lerde 1se elektriksel iliskisi bulunan mantik hiicrelerinin
birbirlerine farkh sekillerde baglanmast ile tasarim saglanir.

= Glg tiketimler1 temel alimirsa mikroislemcilerin FPGA’lere gore daha
tasarruflu oldugu goriiliir.

= Mikroislemciler GHz mertebesinde islem yapmasina karsin, FPGA’ler
genellikle MHz diizeyinde frekans hizina sahiptir.

= Ancak veri isleme noktasinda FPGA’lerin mikroislemcilerden ¢ok daha
fazla islem hacmine sahip olduklart agiktir.

()

1.4 Programlanabilir Mantik Cihazlan (PLD)

= “Programmable Logic Device” (PLD) olarak bilinen ekipmanlar, yeniden
yapilandirilabilir devreler olusturabilmek i¢in kullanilan elektronik
bilesenlerdir.

= PLD’ler sabit bir isleve sahip mantik kapilarinin aksine iiretim esnasinda
tamimsiz isleve sahiptir. Bu yiizden elektronik devrelerde kullanilmadan
once yapiulandiwrilmalar: yani programlanmalart gerekir.

= PLD’ler su anki durumuna, Programlanabilir Salt Okunur Bellek
(Programmable Read Only Memory = PROM) birimlerinden baslayan uzun
bir gelisim siireci sonrasi ulasmislardir.

= PROM, PLA, PAL, GAL, SPLD, CPLD ve FPGA yapilann PLD

kapsamindadir.
€

1.4 Programlanabilir Mantik Cihazlan (PLD)

PROM (Programmable Read Only Memory):

= Kullanic1 tarafindan programlanabilen basit belleklerdir. Bir PROM
igerisine; bir mikroiglemci programi, basit bir algoritma veya durum
makinesi kodu yiiklenebilir.

= PROM elemanm oldukca yavas calistigindan, hiz gerektiren tasarimlarda
kullanish degildir.

= PROM’lar sadece bir defa programlanabilirken, EPROM ve EEPROM gibi
tiirleri silinip tekrar programlanabilmektedir.

= PROM’lar stnmirlt sayrda giris / ¢ikist bulunan herhangi bir kombinasyonel
devrenin gerceklestirilmesi icin uygun cihazlardr.

= Ardisil devrelert PROM tiirler1 ile tasarlamak i¢in, flip-flop veya
mikroislemciler harici olarak tiimlesik yapiya eklenmelidir. @

1.4 Programlanabilir Mantik Cihazlan (PLD)

PLA (Programmable Logic Array):

= Programlanabilir mantik dizileri
(PLA), PROM’lardaki hiz ve sinwrl
sayida giris sorunlarina ¢oziim olarak
gelistirilmiglerdir.

= PLA yapilarnt ¢ok sayida girisi
desteklemekte ve PROM tirlerine
gore daha hizli calismaktadirlar.

= PLA’da girisler, VE (AND)
kapilarindan olusan programlanabilir
yapiya baghdir.

Sistem Girisleri |

M
\JJ
an
vy
Fan
\J/
f4n)
\J/
Fan
U
Fan
\J/

—————————————————————————————————

FanY
1/
Fany
\/
Fany
\/
fan)
\L/
N
1/
FanY
\/

Jany
1
Jany
'y
fany
1
N
U
Fah
3
Fany
U

1
M
1/
Fan)
1/
N
vy
P
\J
Fan)
\J/

FanY
1/
FanY
\
a
1/
an
\/
an
\/
a
€1

T nY
U
Fan
N
FanY
U
N
\
b
U
b
\/

U/
N
1/
TaAY
\J/
)
1/
FanY
€1
FanY
1

4 nY
v
N
1/
fanY
\
fdh)
1/
T
U
fanY
\/

Fan)
U
Fany
1
Fan)
1
Jan)
\J/
Fan)
1/
Fan)
1

' VE (AND) diizlemi |

Y AVAVAWAWAVANWANY)

1.4 Programlanabilir Mantik Cihazlan (PLD)

A B C--- PLA (Programmable Logic Array):

= Bu dizlemde tasarima dair AND

T Y
J
M
U
D
vy
T
U
D
vy
D
vy

islemler1 gerceklestirilir.

Fan)
1/
Fan)
L/
Fan)
L/
Fan)
1/
Fany
1/
Fany
L/

fanY
vy
Fany
\/
an
1
TR
\
Fan
1/
fany
U

N
1/
Fan)
7
fany
A\
N
\J
P
A\
FanY
\

= AND diizleminin ¢ikisi VEYA (OR)

T4
1/
FanY
\J/
4
\J/
A
3
Fan)
\J/
Fany
1/
J
fan)
1/
FanY
1
Tan)
\J/
Fan)
\J/
D
\J/

diizlemine baglanmaktadir.

)
v
Fan)
\J/
D
J
Fdn)
3V
Fan)
\y
Fan)
\

= OR diizleminde tasarima ait gereken

VEYA islemlert yapilir ve istenen

o—d—o———— sistem cikislari elde edilir.

| VE (AND) diizlemi |

P
U/
Fan)
A
Fah
1/
Fan
A
P
\/
Fan
1
FanY
\/
N
1/
fany
\/
N
1/
b
U/
FanY
N

Sistem Cikiglari @

1.4 Programlanabilir Mantik Cihazlan (PLD)

| | L . PLA (Programmable Logic Array):

vy
D
vy
D
vy
FanY
Ny

= PROM’daki gib1 biitiin

Fan)
1/
Fan)
L/
Fan)
L/
Fan)
1/
Fany
1/
Fany
L/

kombinasyonlar gerceklestirilmez ve

fanY
vy
Fany
\/
an
1
TR
\
Fan
1/
fany
U

N
1/

Fan)
7
fany
A\
N
\J
P
A\
FanY
\

sadece gerekli islemler yapilr.

T4
1/
FanY
\J/
4
\J/
A
3
Fan)
\J/
Fany
1/
J
fan)
1/
FanY
1
Tan)
\J/
Fan)
\J/
D
\J/

= PROM’daki gibi minimum terimler

)
v
Fan)
\J/
D
J
Fdn)
3V
Fan)
\y
Fan)
\

kanonik ac¢ilimi isletilerek, carpimlarin
toplami iizerinden sistem c¢ikislari

D
\
T4
1
Fany
1/
)
\JV
)
3/
)
\JV

tretilir.

| VE (AND) diizlemi |

P
U/
Fan)
A
Fah
1/
Fan
A
P
\/
Fan
1
FanY
\/
N
1/
fany
\/
N
1/
b
U/
FanY
N

Sistem Cikiglari @

1.4 Programlanabilir Mantik Cihazlan (PLD)

PLA (Programmable Logic Array):

vy
D
vy
D
vy
D
vy
D
vy
D
Ny

Fan)
1/
Fan)
L/
Fan)
L/
Fan)
1/
Fany
1/
Fany
L/

= PLA’larin 1ki adet programlanabilir

fanY
vy
Fany
\/
an
1
TR
\
Fan
1/
fany
U

N
1/

Fan)
7
fany
A\
N
\J
P
A\
FanY
\

diizleme (AND ve OR) sahip olmasi,

T4
1/
FanY
\J/
4
\J/
A
3
Fan)
\J/
Fany
1/
J
fan)
1/
FanY
1
Tan)
\J/
Fan)
\J/
D
\J/

devre karmasikligini artirdigt gibi
fazladan kullanilan herbir sigorta

baglantisi daha fazla gecikmeye

)
v
Fan)
\J/
D
J
Fdn)
3V
Fan)
\y
Fan)
\
D
\
T4
1
Fany
1/
)
\JV
)
3/
)
\JV

sebebiyet verir.

| VE (AND) diizlemi |

P
U/
Fan)
A
Fah
1/
Fan
A
P
\/
Fan
1
FanY
\/
N
1/
Y
\/
N
1/
b
U/
FanY
N

1.4 Programlanabilir Mantik Cihazlan (PLD)

PAL (Programmable Array Logic) ve GAL (Generic Array Logic):

A B C--
| | | e e 5

VIV IV 7 . =Programlanabilir dizi mantig1 (PAL) ve

I | VEYA (OR) diizlemi | Genel dizi mantigt (GAL), minimum

terimler kanonik acilimi ile tasarima

L/
Fany
\

o)
\J/
a
\J/
FanY
31/
FdnY
U

dayanur.

N
3/
D
U
D
3/
D
3/
D
3
T
U

Fany
1/
Fany
\/
rany
\J/
a
1/
FdnY
3/
rany
3/

= Ancak, PAL icindeki AND diizlemi
& programlanabilmesine ragmen, OR
SRS G S diizlemi sabit tutulmustur ve
DD PO programlanamaz.

R VAVAVAVAWAWAWAW,

' VE (AND) diizlemi | &Tj t’_j W
Fi F2 Fs Q
Sistem Cikislari ()

1.4 Programlanabilir Mantik Cihazlan (PLD)

PAL (Programmable Array Logic) ve GAL (Generic Array Logic):

) | VEYA (OR) duzlemi | = PAL sistemi, ikinci diizleminde

3
Fan)
\J/
4
1/
Fan)
1/
Fdn)
J/
an)
U

sigorta gecikmeleri olmayacagindan

L/
Fany
N/
o)
\J/
a
\J/
FanY
31/
FdnY
U

PLA’dan daha hizli islem yapar.

N
3/
D
U
D
3/
D
3/
D
3
T
U

Fany
1/
Fany
U
rany
\J/
a
1/
FdnY
3/
rany
U

oL = Ancak bu durum, PLA’ya gore daha
az tasarim esnekligi saglar.

R VAVAVAVAWAWAWAW,

' VE (AND) diizlemi | t_’j t’_j W
Fi F2 Fs @
Sistem Cikislari ()

1.4 Programlanabilir Mantik Cihazlan (PLD)

PAL (Programmable Array Logic) ve GAL (Generic Array Logic):

= PAL entegreleri yalnizca bir kez programlanabilen (OTP -2 One Time
Programmable) yapiya sahiptir.

e
—
- o
=

o=
e
vy
>
3
2
k)

=

"W b iﬁ"* Lj
T T T

o ||

=
- el

Weoe b
. |||? {Ill_) >

[

[]
L
]

[3 [} X @ X @ B X Ry, AAA

+V —MWN,

e
HEHE)
Tl Tl T

R

IEnSTE

Tki girisli PAL 6rnegi

Iki girisli GAL 6rnegi

PAL ve GAL yapilarina dair basitlestirilmis icyap1 @

1.4 Programlanabilir Mantik Cihazlan (PLD)

PAL (Programmable Array Logic) ve GAL (Generic Array Logic):

= GAL entegreleri 1se tekrar programlanabilir bir AND diizlemi icerir.

= GAL mimarisinin, PAL yapisina gore diger farki ise kombinasyonel
fonksiyonun gerceklesmesinde kullanilan sigorta yapilaridir.

]
L

»

Tki girisli PAL 6rnegi

BN T

} H-.W\,j..ffﬁ
I~ . D{} »-|||J=_ ~»||| '||| |||

f T HE

. _} NV -
T,

Iki girisli GAL 6rnegi

PAL ve GAL yapilarina dair basitlestirilmis igyap1

D

()

1.4 Programlanabilir Mantik Cihazlan (PLD)

PAL (Programmable Array Logic) ve GAL (Generic Array Logic):

= GAL mimarisinin yeniden programlanabilmesinin nedeni, sigorta yerine
(EEPROM’un programlama mantigina benzer) MOSFET tabanli yeniden
programlanabilen islem teknolojisinin (E°’CMOS) kullanimuidr.

A A B B

& L] L] L]

+V —AM T . | . ° \—
- LIRLIRUIRLE)
N } e
NN il el
N ¥, B
N "|Ii il el il)
. } +V —AMW, . ¢ = 2 |
SIS i

Tki girigli PAL 6rnegi

iki girisli GAL 6rnegi

PAL ve GAL yapilarina dair basitlestirilmis icyap1

1.4 Programlanabilir Mantik Cihazlan (PLD)

PAL (Programmable Array Logic) ve GAL (Generic Array Logic):

= PAL ve GAL mimarileri i¢inde OR diizlemi ve ilgili ¢ikislarin bulundugu
birim makrosel olarak bilinir.

= Makrosel sistem c¢ikisinda, ciktilar stirekli tretilebildigl gibi bazi makrosel
tiplerinde girdiler de alinabilmektedir.

= Ayrica bir makrosel; kombinasyonel mantik, hafiza mantig1 veya bu ikisinin
kombinasyonunu saglayacak sekilde yapilandirilabilir.

= PAL ve GAL mimarileri, SPLD (Simple Programmable Logic Device)
kapsamindadir.

@

1.4 Programlanabilir Mantik Cihazlan (PLD)

CPLD (Complex Programmable Logic Device):

e PLD 1S1
= PLA ve PAL yapilart kiguk CPLD yapis
devreler i¢in uygulanabilir olup,
cok fazla girdi / ¢ikt1 gerektiren Girls / Gikas Pinlert
biiyiik ve kompleks devre y
tasarumlart icin uygulanabilir Mantik Mantik Mantik Mantik
[. Blogu Blogu Blogu Blogu
degildir. - - - -
5 & 2 S = 9
- o
v vl Programlanabilir Arabaglantilar) E
= Kompleks Programlanabilir |& 2
Mantik Aygiti (CPLD); |£ 1t 3
karI.nasl:l(deVre o t.arsarlmla.(rl .lgln, Mantik Mantik Mantik Mantik
tekil entegre icginde Dbirbiriyle Blogu Blogu Blogu Blogu
etkilesimli birden fazla PLA’nin
islevini yerine getiren tiimlesik - Giris / Cikas Pinleri
entegredir.

©

1.4 Programlanabilir Mantik Cihazlan (PLD)

CPLD (Complex Programmable Logic Device):

= PAL ve PLA yapilan ile yalnizca birkac¢ yiiz mantik kapist esdegerinde
olan kiiciik devreler tasarlanabilir.

Giris / Cikis Pinleri
Mantik Mantik Mantik
. oo . Blog Blog Blog Blog
= CPLD ile yiizbinlerce - - - - - -
mantik kapilari < 10 i E
esdegerindeki komplike ‘| y) |a
-~ £ Programlanabilir Arabaglantilar 1=
devre tasarimlari S 2
gerceklestirilebilir. §“ it it it =
Mantik Mantik Mantik Mantik
Blogu Blogu Blogu Blogu
Gii‘ig / Cikis Pinieri

1.4 Programlanabilir Mantik Cihazlan (PLD)

CPLD (Complex Programmable Logic Device):

Mantik Bl({klan Dikey Arabaglantilar = CP LD yapllal" lnda
fN ey o gerekli mannk hiicresi
MB MB MB M3 MB M3 M3 MB Prd

, - sayist arttik¢ca, mantik
ME e w | v f | e || e || hiicrelerinin dizilis sekli
e e ve tek bir genel ara

MB MB MB MB MB MB MB MB o
i " baglantinin olmasindan
MB | it | M M3 [M| M| MMM gve e Oturld, hiicreler arast
MB Baglantilar MB - - - - - - - - Aral?fnfglantllar baglantl SaylSl da

- - ' katlanarak artar.

MB MB MB MB MB MB MB MB

MB MB
MB MB MB MB MB MB MB MB MB MB
CPLD ik o o | — U T] T Mol T = Bu durum ise ¢ok biiyiik
: G t 0 t : L[] L] o0 [] °
-------- e tasarimlar icin onemli bir
i— FPGA Tipik Mantik Blogu - Baglant1 Gésterimi i handikap te§kil eder ve
CPLD’leri kullanissiz
Mantik bloklar (hiicreleri) ve ara baglantilarin, hale getirir.

CPLD ve FPGA yapilarindaki tipik dizilisi (@)

1.4 Programlanabilir Mantik Cihazlan (PLD)

CPLD (Complex Programmable Logic Device):

MB

MB

MB

Global
Baglantilar

Mantik Bloklart Dikey Arabaglantilar
L3 ”

/ aMB MB MB M3 MB MB M3 MB

{"

r
NI’B MB MB MB MB MB MDB MB MB

MB
MB MB MB MB MB MB MB MB

MB
B MB MB MB MB MB MB MB MB

MB
MB MB MB MB MB MB MB MB

MB
MB MB MB MB MB MB MB MB

MB
MB MB MB MB MB MB MB MB MB
MB MB MB MB MB MB MB MB

Mantik bloklar (hiicreleri) ve ara baglantilarin,
CPLD ve FPGA yapilarindaki tipik dizilisi

Yatay
Arabaglantilar

Parca
Arabaglantilar

= FPGA yapisinda mantik
hiicreleri, CPLD’lerden

farkl olarak dizi
biciminde yerlestirilir.

= FPGA 1¢indeki mantik
hiicreleri arasi baglar,
yatay ve dikey
programlanabilir ara
baglantilar vasitasiyla
saglanir.

©

1.4 Programlanabilir Mantik Cihazlan (PLD)

CPLD (Complex Programmable Logic Device):

MB

MB

MB

Global
Baglantilar

Mantik Bloklart Dikey Arabaglantilar
L3 ”

/ aMB MB MB M3 MB MB M3 MB

{"

r
NI’B MB MB MB MB MB MDB MB MB

MB
MB MB MB MB MB MB MB MB

MB
B MB MB MB MB MB MB MB MB

MB
MB MB MB MB MB MB MB MB

MB
MB MB MB MB MB MB MB MB

MB
MB MB MB MB MB MB MB MB MB
MB MB MB MB MB MB MB MB

Mantik bloklar (hiicreleri) ve ara baglantilarin,
CPLD ve FPGA yapilarindaki tipik dizilisi

Yatay
Arabaglantilar

Parca
Arabaglantilar

= Mantik hiicreler1 arasi
gerekli olan baglant
sayisi, hiicre sayisina
paralel artig gosterir.

= FPGA’lerin bu
ozellikler1 sayesinde,
bityitk tasarimlar icin
CPLD’lerde karsilasilan
baglanti sorunlar
minimize edilir.

©

SONRAKI DERS KONUSU
LA AT N

v
2- FPGA iCYRPISI VE OZELLIKLERI

ILERI SEYISAL SISTEMLER

2- FPGA Icyapisi ve Ozellikleri

Ders sorumlusu:

Do¢. Dr. Hasan KOYUNCU

2. FPGA ICYAPISI VE 0ZELLiKLERI

= Klasik CPLD mimarisi, programlanabilir ara baglantilara sahip PAL /
GAL veya PLA tipi mantik bloklarindan olusur.

= Temel olarak FPGA;

1. Mimaride farklilik gosterir,

2. PAL / PLA tip1 dizileri kullanmaz (daha komplike ve kullanish
birimler mevcut),

3. CPLD’lerden ¢ok daha fazla yogunluga sahiptir.

= Tipik bir FPGA, tipik bir CPLD’den ¢ok daha fazla sayida esdeger kapiya
sahiptir.

= FPGA’lerdeki mantik tireten unsurlar genellikle CPLD’lerden ¢ok daha
kiiciiktiir ve bunlardan ¢cok daha fazlast vardr.

2. FPGA ICYAPISI VE 0ZELLiKLERI

= FPGA’deki programlanabilir baglantilar, temel bir satir ve stitun (baglantisi)

lizerinden ayarlanir.

= FPGA’ler, sayisal devrelerin gerceklestirilmesi ve test edilmesi icin gelistirilen

programlanabilir yongalardir.

= FPGA yongalar li¢ boliimden
meydana gelir:

= Programlanabilir mantik bloklar
(Configurable Logic Block—> CLB)

= Mantik bloklarini birbirine baglamak
i¢cin kullanilan programlanabilir ara
baglantilar (Interconnect Resources)

= FPGA’in dis diinya ile baglantisini
saglayan ve programlanabilen giris-
ctkis birimleri (1/0 Elements)

Girig / Cikis Pinleri

Ara baglant1

diigtimleri

<<<<<

~~~~~

‘‘‘‘‘

ttttt

A-t| - Mantik
~¥| Bloklart [v-

Mantik

~v| Bloklari |~

AAAAA

ggggg

1 e

Mantik

,,,,,,,,,

\\\\\
4

LLLLL

L] Mantik )
| Bloklarr [

________ I;i"o gramlanabilir

-~ ara baglantilar

| Bloklarr [Ny



2. FPGA ICYAPISI VE 0ZELLiKLERI

= Programlanabilir mantik bloklar1 (Configurable Logic Blocks = CLB),
FPGA’lerin temel yapisini teskil eder.

= Bu yapilarda bir veya birkag adet dogruluk tablosu (Look Up Table 2>
LUT), ¢coklayici (multiplexer) ve saklayici (flip flop) mevcuttur,

—
—
—
—
—
—
_— —
_—

LUT

_____________________________________



2. FPGA ICYAPISI VE 0ZELLiKLERI

= Mantiksal islemler bu birimlerde ger¢eklestirilir ve her tiretici firma mantik
bloklarinmi farkli isimlendirmektedir.

= Xilinx firmasi mantik bloklarimi mantik hiicresi (logic cell) olarak

isimlendirirken, Altera firmasi bu birimler1 mantik elemani (logic element)
olarak adlandirir.

—
—
—
—
—
—
_— —
_—

LUT

____________________________________________

_____________________________________



2. FPGA ICYAPISI VE 0ZELLiKLERI

= Programlanabilir mantik bloklari, minimum terimler kanonik acilimi
(carpimlarin toplami) temelli ¢alisir.

= Bu teorem SOP (Sum of Products) olarak da bilinir.

—
—
—
—
—
—
— —
_—

|
|
|
wr Y Lok -

_____________________________________



2. FPGA ICYAPISI VE 0ZELLiKLERI

= LUT vyapisinda lojik secim

birimi ve hafiza hiicreleri yer Lojik Secim Hazifa
almaktadr. Birimi | | Hiicreleri |
.o : - ¢
= Buna gore; A, A4 A, 1 |
= Giris degisken sayis1 ‘n’ | 1A ol
olarak belirtilirse, LUT” da , 2
bulunan hafiza hiicrelerinin A4 E 0l—s¢
sayis1 2" olacaktir. Ay—> o . SOP
4 A, A A, 1 Cikist
-3 girisli bir LUT ornegi A4, —» A, 4,4, 0 }
yan tarafta  goruldiigi 1A 14
gibidir. ¥ : lé ;
“““‘ i A2 Al AO O \ J i
‘t‘ | :
Belirli bir SOP cikisi i¢in programlanan Az Al AO 1
LUT yapis1 6rnegi

e o o = === == == == —— == = == = = = ===



2. FPGA ICYAPISI VE 0ZELLiKLERI

=Hafiza hiicrelerindeki herbir
‘0> terimin kullanilmadigini
belirtir ve herbir ‘17 1ise
terimin SOP cikisinda
olacagini gostertr.

= Buna gore 3 girise karsilik,
8 farkli hafiza hiicresi
olmalidir.

= SOP cikisi 1se 8 terime kadar
farkli durumu barindirabilir.

Lojik Se¢im Hazifa
_______ Birimi || Hiicreleri |
4,44 {0
| 4, 4,4, —{0]—¢
| LAA o]+
Ay—» LA ~ Sop
i W YNSE ) Gk
Az—é—b A4, ZIA_O 0 :
| 4, ZIAO L :
A, A4 - To]—4
A, 4,4, 1 ' L.
0T 61

e o o = = ———— === == === = —— === —— = ==



2. FPGA ICYAPISI VE 0ZELLiKLERI

Lojik Se¢im Hazifa
» Ornek icinde etkin SOP cikisi, - Blriml ----- Huc};‘elen
hafiza hiicrelerinin durumuna gore v |
\ A, A4, 1
4,44, + A,A,A, + A,AA, + A,A,A, o |
seklinde elde edilir. A, 44, 01
| AAA 0 . I
AO—.—> e 1 . SOP
4 | , 4,4, 4, 1 { I Cikist
4, —~—> 4, 4, 4, 0
| 4, ZIAO 1 ?
A A A ol
A, A A, 1
'\YY 6—:'{\6%

e o o o o == —— = = = = —— === === ===



2. FPGA ICYAPISI VE 0ZELLiKLERI

= FPGA icindeki mantik bloklar1 4 farkli islevde programlanabilmektedir:
= Normal mod
= Genisletilmis LUT modu
= Aritmetik mod

= Paylasilan aritmetik mod

= Bir mantik blogu, bu dort moda ek olarak sayict ve otelemeli register
olusturmak i¢in bir register dizisi olarak kullanilabilir.

= Normal mod, ilk olarak kombinasyonel lojik fonksiyonlarin iiretilmesi i¢in
kullanilir.

= Bir mantik blogu; iki adet LUT birimi ile bir veya iki kombinasyonel cikis
fonksiyonu saglayabilir. @



2. FPGA ICYAPISI VE 0ZELLiKLERI

S

______________________
I 1 I

= Bir mantik blogu; iki adet | —
o o o . oy o —T > ) — >
LUT birimi ile bir veya iki | 4Girgi | ] 6 Girigli
. I —p |
kombinasyonel ¢ikis ——» LUT | ——>  LUT
. - o B i —
fonksiyonu saglayabilir. ; | s
——>| 4 Girigli || ——> 2Girisli ||
= Normal mod kullanimi su L o L ot
kurallara baghdur; — | '

S S S

s o et e s e’ s e e g e e e e g

= Herbir mantik blogunda,

LUT lardaki girislere gore iki T cqeai | < Girict
farkli SOP cikisi elde edilebilir. — Lot e g
_:_’ i
(4+3°1ik iki LUT igeren mantik T:
blogunda SOP, = A;4,4,4,,
SOP, =4,4,4, gibi ——> 4 Girighi | | 5 Girisli
2 =AzA1d, gibi) e LUTS B LUTs
E |

____________________________________________



2. FPGA ICYAPISI VE 0ZELLiKLERI

o i e o T o g S

| i —
— | e
——»| 4 Girisli L ———» 6 Girisli
——»| LUT ! —— LUT
= Normal mod kullanimi su ; | i,
kurallara baghdr; i —
— | .
: ——> 4Girigli | | ——> 2 Girigli |
| ] I 1
BVI.I' LUT 91k1§1nda en fazl§.6 : wr [ : wr [
degiskenli terim bulunabilir. ] ' |
Diger bir deyisle, bir LUT e
yapist en fazla 6 girise sahip
olabilir. T
| 5 Girigli | | 5 Girisli i
: LUT i LUT )
— | |
(SOP, = A5A4,A3A5A14, gibi) T:
—— 4 Girigli | | 5 Girigli | |
——>»{  LUT — LUT 0
_i_> d 4

____________________________________________



2. FPGA ICYAPISI VE 0ZELLiKLERI

= Normal mod kullanimi su
kurallara baghdur;

= Her iki LUT girislerine totalde
maksimum 8 degisken
sunulabilir.

(A7' ey A]_ AO)

o i e o T o g

— i
——»| 4 Girisli L,
——» LUT |
— |
—>| 4 Girisli :
——» LUT -
_,_>: |
——»] |

: Girisl :

: 5 Girisgli :

" LUt —
— |
——> 4 Girigli | |
——>»  LUT B
_,_b: :

______________________

S

— i
——> |
—» 6 Girisli l >
——  LUT |
—> |
——> i
—>| 2 Girisli |
——» LUT -
— |

: Girisl :

! 5 Girisli :

— P —
i LUT |
— W
| i
: ]

______________________



2. FPGA ICYAPISI VE 0ZELLiKLERI

o i e o T o g S

= Normal mod kullanimi su — I

kurallara baghdir; T 4Gl % oGl |

— »| LUT | ———»  LUT |

— > ! — |

i i — i

= Genelde 4 veya daha az ]

57 ; Ii — | 4 Girisli | ——| 2 Girisli |
degt;ylfen iceren iki SOP : o 3 —— : o Ly —

fonksiyonu (toplamda 8 farkli s | : |

veya daha az sayida giris e

degiskeni igeren iki LUT) i¢in

LUT’larda giriglerin " '

lastmina gerek duyulmaz, | sGiristi | 5 Girighi ||
pay ] — " wwr [ LUT i

— | |

= Ancak ortak kullanilacak [

degisken var ise paylasim ——> 4Girisli | | 5 Girisli ||
5 i oyl —> LUTS e LUTs —

gerekir. . .

____________________________________________



2. FPGA ICYAPISI VE 0ZELLiKLERI

o i e o T o g S

= Normal mod kullanimi su —
kurallara baghdur; > 4 Girisli R > 6 Girisli
——» LUT | ——> LUT |

) — i - a
Ornegin; iki 4-degiskenli i
fonksiyon = 4+4 iki LUT, — :

, , , _ , —> 4Girisli || ——> 2Girisli | |
bir 4-degiskenli ve bir 3-degiskenli ——» LUT — ——»{ LUT —
fonksiyon = 4+3 iki LUT, — | '
bir 3-degiskenli ve bir 3-degiskenli A
LUT =3+3 iki LUT —> i ' §

| 5 Girisli 5 Girisli
— ot T LuT B
Diger bir deyisle, 5 ve iizeri ) |
degiskenin kullanilacag: bir LUT ‘
icin diger LUT girisi kontrol ] =
edilmeli, toplam girig sayisi 8’ i . peci g —— i —
gecerse paylasim yapilmalidir. ——> | '

____________________________________________



2. FPGA ICYAPISI VE 0ZELLiKLERI

mmmmmmmm ==

= Normal mod kullanimi su
kurallara baghdur;

= Giris paylasimi yapildiginda
maksimum &8 farkl girisi
destekleyecek farkl
kombinasyonlarda baglanti
yapilabilir.

= Paylasim yapildiginda herbir
LUT yapisinda maksimum 6’ sar
terimli fonksiyonlar (6+6 1ki LUT)
kullanilabilir.

mmmmm e — -

4 Girisli
LUT

6 Girish
LUT

4 Girisli
LUT

2 Girisli
LUT

S

S S

e e e e g

5 Girigli
LUT

5 Girighi
LUT

4 Girisli
LUT

5 Girisli
LUT

______________________

______________________




2. FPGA ICYAPISI VE 0ZELLiKLERI

Ornek 2.1: Normal modda isletilen bir mantik blogunda, cikista 5-degiskenli
(ApAALA LA ve 3-degiskenli (A,Aq,A5) terimlerin uretilecegt SOP
fonksiyonu 1¢in gerekli semayi ¢iziniz, ¢alisma prensibini kisaca 1zah ediniz.

PRI R R S SR AR S -

- Istenilen giris degiskeni A —» o
sayisi toplamda 8 oldugundan A, ——»f ° Slljl‘lTﬁll

ve her SOP cikisinda farkl Ay ——p

degisken carpimlari Ay ——»
saglanacagindan, LUT lar i

o . A :
arasi giris paylasimi o AS T 3 Girisl
yapilmasi zorunlu degildir. 6T ™ LuT

e e ——————————



2. FPGA ICYAPISI VE 0ZELLiKLERI

*Genisletilmis LUT modu, giris paylasimi yapilan 5+5 iki LUT ve bir harici
giris kullanarak, 7 farkl gir

_____________________________________________________

5 Girigli |
LUT
cikisinda normal modda

5 Girigli ~[>>—>
LUT
oldugu gibi en fazla 6

degiskenli terim 1iceren | X
fonksiyonlar yer alir. s

= Harici giris normal ve
timleyen olarak herbir
LUT cikisindaki terimler
ile ¢carpilmaktadir.

= Herbir AND  kapisi

Genisletilmis moddaki mantik blogu O



2. FPGA ICYAPISI VE 0ZELLiKLERI

SOP: | AsA4A3AzA; + AsALA3Ay Ay + AsAsA3A, Ay

Ornek 2.2: Blok ¢ikist =
AsA,A3A,A.A¢ +
AzA4A3A,A1Ap +
AzA4A3A,A1Ap +
AgAsALA3AAp +
AgAsA A3 A Ay +
AgAsALA3A, A, olarak
elde edilmek 1stendigi
durumda; genisletilmig
mod mantik blogu icin
herbir LUT c¢ikisindaki
SOP fonksiyonlarini
belirtiniz.

- -

_______________________________

-

A ——»
A= o
. 1risli
A3 l LUT
Ay =
AS | E
{12 s Gt
i irish
l LUT
| >
A()_i—p
SOP2

- e -

i
o

o —————————————————————————

AgAsALAsA, + AgAsA A3 A, + AgAsALAs A,

©



2. FPGA ICYAPISI VE 0ZELLiKLERI

= FPGA yapilarinda farkli programlama teknolojiler1 kullanilabilmektedir.
Bunlar;

= SRAM (Static RAM) tabanli
= SRAM / Flash tabanli

= Anti-fuse tabanlh

= EPROM / EEPROM tabanl

= Flash tabanli olarak siralanabilir.

= En sik kullanilant SRAM, yani Duragan Rasgele Erisimli Bellek (SRAM
—> Static Random Access Memory) teknolojisi tabanlt FPGA yapilaridr.

= Bu yapilarda, CLB bloklarina yazilan program verisi enerji kesildigi
durumda kaybolur. O



2. FPGA ICYAPISI VE 0ZELLiKLERI

= SRAM tabanli FPGA tiirlerinde iki farkli program verisi kaydetme secenegi
vardir: AL A S

=Yonga iizerine i Rininininieiniainiaiaia
yerlestirilmis bir i o el Lol Lo fLef Lo b L) Lo Lsfs) Lo} s )
kalic1 yapilandirma | LS ELLELE L e EL R e e el ]
bellegi, program | Fff_________ 5
verisini saklamak : N s
X ° oW o : l CLB’ leri enerji ¢ ¢ ¢ ¢ ¢ C :

\Y & enel‘]l Vel'lldlgl i : verildiginde veya reset lrS_ Ié é Té é ; é :
o i : sonrasi yeniden o A —— ——

durumda cihazi i U programiar i 1AEBER
yeniden i Snininimmaioioioininiol
diizenlemek icin ; ' [ i (o] (6] o) o [ o) (] 5]
PROGRAMLAMA | ][] [c] [c] [e] [e] [e] [e] el [e][e] !

d: YAPILANDIRMA - ? (i (i (i ? ? ? ? ? 1

= BELLEGI gl aaIan

Yonga iizerine yerlesik .7 TR Rl Rl aRE R
kalici yapilandirma ~ +*° | o] o] Lo Lo [5] {o] (o) (o] [s] [o] o] [s] [2]

R R R,

belleginin mantign A @



2. FPGA ICYAPISI VE 0ZELLiKLERI

= SRAM tabanli FPGA tiirlerinde iki farkli program verisi kaydetme segenegi

vardir:

= Yonga lizerine yerlestirilmis bir kalic1 yapilandirma bellegi, program

verisini saklamak ve enerji verildigi durumda cihazi yeniden diizenlemek
icin kullanilir,

= Harici bellek birimi ile veri transferinin kontrolunii saglayan ana
islemci kullanilr.

PROGRAMLAMA
VERISI
ﬁ

Ana
Islemci

Kalic1
Yapilandirma
Bellegi

&P FPGA’ de ana islemcinin

Gecici FPGA
Birimleri

gecici birimler ve kalici
yapilandirma bellegi ile
iligkisi

()



2. FPGA ICYRPISI VE OZELLIKLERI

= FPGA vyapilari, son kullanicit tarafindan her tiirli mantiksal tasarimin
programlanabilecegi bos bir sayfa olarak gortilebilir.

= Baz1 FPGA tiirleri sert cekirdek (hard-core) tasarimlari igerir. Bu tasarimlar
FPGA icindeki lojik bir bolumdiir ve iiretici tarafindan belirli bir
fonksiyonun saglanmasi igin eklenir.

= Sert cekirdek tasarim yeniden programlanamaz.

Ornegin; bir miisteri sistem tasariminin bir boliimiinde kiiciik bir
mikroislemciye ihtiyag duyarsa, bu birim kullanici tarafindan
programlanabilir veya iiretici tarafindan sert ¢ekirdek tasarim olarak
FPGA icine eklenebilir.

= Eger gomiilii fonksiyon programlanabilir ozelliklere sahipse, bu tasarim
yumusak cekirdek (soft-core) olarak bilinir. @



2. FPGA ICYAPISI VE 0ZELLiKLERI

= Sert ¢ekirdek yaklasimin temel avantajlari;

= kullanic1 tarafindan sahada programlanacagi kapasiteden daha az
kapasite 1le bir fonksiyonun programlanmasi,

= yonga iizerinde daha az yer harcanmasi,

= daha kisa siirede temin olarak siralanabilir.
= Sert ¢ekirdek yaklasiminin temel dezavantaji ise feknik ozelliklerin iiretim
esnasinda sabit olmast ve kullanicinin iiretilecek yapiya miidahale

edemeyecek sekilde (oldugu gibi) kullanmasi zorunlulugudur. Ciinkii bu
yapilarda yeniden diizenleme opsiyonu yer almaz.

= Sert cekirdek tasarmmlar, genelde sik kullanilan dijital sistemler
(mikroislemci, standart giris / ¢ikis birimleri, dijital sinyal tiretecleri, v.b.
yapilar) i¢in mevcuttur.

= Birden fazla sert ¢ekirdek fonksiyonu FPGA i¢inde yer alabilmektedir. @



2. FPGA ICYAPISI VE 0ZELLiKLERI

= Sekilde kullanici tarafindan programlanabilen mantik birimleri ile ¢evrelenmis
sert ¢ekirdek yaklaginu goriilmektedir.

= Bu O0rnek, temel seviye bir gomiilii sistemdir. Clinkii sert ¢cekirdek fonksiyonu
kullanici tarafindan programlanabilen mantik birimleri i¢ine yerlestirilmistir.

o m T T TS m o ——————m———————----e
I e T e T e T e T e T e T e T e T e T e T e T e T e T e T e T e T e I —1 1
| C C C C C C C C C C C C C C C C C C C C 1
| L L L L L L L L L L L L L L L L L L L L 1
| B B B B B B B B B B B B B B B B B B B B !
| I e I I N I i B i B A e R O [ O | I A i A R (I (O I B R I L= L= 1
V. - - - - - . . - . . - . . . - - O T T s
| C C C C C C C C C C C C C C c C C C C C : : :
bl T T Ll I T L I L L T L. L L T L I L Loy . 1
| B B L] B B B L] B B B B ] B B B ] B B B B : ] Gerlye kalan Ve !
= = = = = = = — — —— —— = —— = —— —— = == == == { i 1 . ]
CTel el el [ellel el el el el el [ellcl el el [el <] [elc] [c] el ¢ kullanicitarafindan |
| L L L L L L L L L L L L L L L L L L L L - |
L | s B B B B B B B B B B B B B B B B B B B | 1 :programlanabllen CLB:

_  — — _  — — _ _ = —F — _ — — — — 1 1

- - - - - - - - O T T T T T — a4 < a |

e T | < C C C C C C C C C C C C C C C C C C C : : blrlmlerl :

I ': L L L L L L L L L L L L L L L L L L L L 1 : |

: | B B B B B B B B B B B B B B B B B B B 2 I }

. : N e = e e e e e e e e e = = e e e e e

- SRR AR AERRRERER R AR R ER

. . |

. birfonksiyonun i\ 5| 5| 5] |5 |&] || |5 5] |8)|[5] 5] [®]||5] 5] [&] |5) 2] 5] &) ] !

= o - ' — = = 5= == = 5= 5= = |l il = == = = 5= B= == == ]

' o ; 5 - e . ; el Tel Telllel Tel Tel el Tel Tl Tal 1!

(iglevin) saglanmasinda,; Llre] [T FEre (el e Tl el el Tel ]

)

 uretici tarafindan T [ [ T e e Lo o L (8] (o) [w))[a] (] (o] [w][5] |o] [5]|s]

1 —— — — 3 — — — — —l—/ = —l— — — — — — — — |

i programlanmus CLB i rc7 rc] [c] [¢] [c] <] [c] [c] [elile] Tl Tellle] [<]| [c] <] [c][e] [c][c] i

| 20900 ca ] T. T L. T. 1 B T L. L. I. 1. T. T. L. 1 B T. T T T T. L. !

| balimii e B B B B B B B B B B n B B B ] B B B n|!

i 1 1

i = = = e e e e e e e e e e e e =

t o[c C C C ¢ C C C C (6] (& C C [ ¢ C [ C C |

""""""""""""""""" ol L L L L L L L L L L L L L L L L L L L L 1
| B B B B B B B B B B B B B B B B B B B B ]
T i i i B i i B i B i 1 [ ) (e I i i ) (i i i il il B
' T — —/ —/ —/ — — /I A I 4} —/ /| — — —— . .
e C C c cl e C C c C cl [c]|c C cl |c cl [c C cl| FPGAI 1ne
| L L L L L L L L L L L L L L L L L L L L 1 g
l B B B 11 B B B B B B B B B B B B B B B B : o o o
e e R e e R R e e R R R e Yer1e$t1I11m1$ sert
| C C C C C C C C C C C C C C C C C C C C :
| L L L L L L L L L L L L L L L L L L L L L =
Cln) s s s ] 8] (5] (8] 5] (8] 5] (5] |s]|s] 5] 5| |5] 5] 5] 5| |s] i ¢ekirdek mantiginin

I A 0 0 0 0 A A o I O 0 L 0 O B

I e T s T e T e T s T s O s T s Y e I e S s Y s T e T e T s Y s T s T s (N s T s B .
| C C C C @ [ C C C C C C C C C C C C C C
| L L L L L L L L L L L L L L L L L L L L : temel hall
: B B B B B B B B B B B B B B B B B B B B :
AR AR L AR A N Ll R N Ll LR RN EA R RN | B



2. FPGA ICYAPISI VE 0ZELLiKLERI

= Sert ¢ekirdek tasarimlarin gelistirilmesi ve fikri miilkiyeti FPGA iireticisine
aittir.

= Uretici tarafindan gelistirilen tasarimlar ise fikri miilkiyet (IP = Intellectual
Property) olarak bilinir.

= FPGA iiretici firma, IP dahilindeki birimlerin tiplerini kendi web sitesinde
paylasr.

= [P birimler yalmizca sert ¢ekirdek tasarimlari icermez, aym zamanda bu
tasarimlarin yumusak ¢ekirdek tasarimlar ile birlestirildigi durumlar da bulunur.

e*

= Parametre secimi ve ayarlamast esnek olabilen bir islemci birimi bu duruma
ornek olarak verilebilir.



2. FPGA ICYRPISI VE OZELLIKLERI

= FPGA, gomiilii bellek fonksiyonlarinin yanisira dijital sinyal isleme (DSP -
Digital Signal Processing) fonksiyonlarini barindirr.

Giris / Cikas

Elemanlan (I0Es)

IOEs

Gomiilii Bellek
Bloklan

Gomiilii Bellek

Bloklar:

Giris / Cilag
Elemanlarn (10Es)

[OFs }_
1

-

i

A

LABs

.

LABs

LADBs

LABs LABs

-|I|I0EI5I|--{I1,IA[:SI LABs LABs |-{{ -1 LABs |--i_:_]--| 1.ABs )—-{_'_i--h”'”LlAllas””” _____

4 10Es || LaBs LABs =/ 4 < LaBs | -i_'_]- 4 rass -{_'_i- - LABs oo

| I0Es |-|= LABs |- LABs -| } < LaBs |- -{_'_]- LABs -{_'_i- - LABs I

< 100 || LaBs R LABs LABs |4 R4 TARs |—-‘_'_]--} LABs }--{___]--{”””liAll%s”””)- _____
it

A
Loy

o
-
Ly

LA

i

1.LABs

LABs

3

LABs

Bl

i

IOE LABs -1 LABs '— 1.LABs

1OL: LAB LAB:s LABs
-‘IIISI)--‘IIISI}- : -i v +-|Illbl|-

IOE L.AB LAB LAB; LAB
_|IIISI|-_{IIISI}_ . -L|_|_|S_|—'--| +-|Illsl|_

I0Es LABs LABs —| LABs '— LABs

LABs

FPGA blok

LABs

LABs

diyagrami

LABs

LADBs

(akis semasi)

0 o v v e

s
-

i




2. FPGA ICYRPISI VE OZELLIKLERI

= DSP fonksiyonlari; dijital filtreler, sinyal 1sleme ve kontrol sistemleri gibi bir¢ok
uygulamada kullanilmaktadir.

Giris / Cikas

Elemanlan (I0Es)

IOEs

Gomiilii Bellek
Bloklan

Gomiilii Bellek

Bloklar:

Giris / Cilag
Elemanlarn (10Es)

[OFs }_
1

-

i

A

LABs

.

LABs

LADBs

LABs LABs

-|I|I0EI5I|--{I1,IA[:SI LABs LABs |-{{ -1 LABs |--i_:_]--| 1.ABs )—-{_'_i--h”'”LlAllas””” _____

4 10Es || LaBs LABs =/ 4 < LaBs | -i_'_]- 4 rass -{_'_i- - LABs oo

| I0Es |-|= LABs |- LABs -| } < LaBs |- -{_'_]- LABs -{_'_i- - LABs I

< 100 || LaBs R LABs LABs |4 R4 TARs |—-‘_'_]--i LABs }--{___]--{”””liAll%s”””)- _____
it

A
Loy

o
-
Ly

LA

i

1.LABs

LABs

3

LABs

Bl

i

IOE LABs -1 LABs '— 1.LABs

1OL: LAB LAB:s LABs
-‘IIISI)--‘IIISI}- : -i v +-|Illbl|-

IOE L.AB LAB LAB; LAB
_|IIISI|-_{IIISI}_ . -L|_|_|S_|—'--| +-|Illsl|_

I0Es LABs LABs —| LABs '— LABs

LABs

FPGA blok

LABs

LABs

diyagrami

LABs

LADBs

(akis semasi)

0 o v v e

s
-

i




2. FPGA ICYRPISI VE OZELLIKLERI

= GOomiilii bloklar FPGA arabaglanti matrisi i¢inde bastan sona bulunur ve giris /
c¢ikis birimleri (IOEs = Input / Output Elements) FPGA dis boliimiinii sarmaktadir.

Giris / Cikas

Elemanlan (I0Es)

Gomiilii Bellek
Bloklan

Gomiilii Bellek

Bloklar:

Giris / Cilag
Elemanlarn (10Es)

\ l l
/ vy 3 -'llll | T T 11 [?HS llllllllllllll}-
-||[|0E|s||- -‘lliAlisl)--i—-—‘-% wuwuwu". TT 11 |L|A]|35| L
1OEs LABs -i_'_]- < LABs R = 1aBs R4 - < LaBs -i_'_]- - 1ABs R -{_'_i- - LABs oo
| I0Es |-|= LABs |- -i_'_]- < LABs | ~ LABs = -| } < LaBs |- -{_'_]- < LABs - -{_'_i- - LABs I
I0Ls LABs -‘_'_]- LABs LABs |4 R4 TARs -‘_'_]- LABs -{___]- -{I Ty I[iAll%sI S I)- _____
-{IIIOhII)- -{II,IAEI;SI)--L._]--{TLIA_?S_F}- < 1aBs |}/ ' }-|ILlAJis'|--| . |- LABs -i_'_'--| LABs P e
1OFs LABs -i_'_'- 1.ABs 1.ABs -| } IABs k(4 e
IOEs LABs -i_'_]- = LABs |- LABs -| } LABs k(4 e
TOEs LABs -i_'_]- -‘TL;?is_r'— - LaBs |- -| } LABs {4 .
-{l I'()Els')- -(ILIA?sIF -l_._]- LABs LABs ] ' - -|ILlAJ?';s'|— _____
_||[|0Fisl|-_{|l]/\?sl}_-| v +-‘TII[L\—Bér'- LFFFIJLABS 1 . +-||L|}‘\£:S||_ -----
I0Es LABs m < LaBs LABs |14 o LaBs
- | IIOEIS | < lLlAE:s : - -l_'_‘- -11_L;A_3is_r'- = 1aBs |-|{ = LaBs | FPGA blok
4 08 |4 LaBs = -i_._]- LABs LABs |4 R |4 LARs diyagraml
10Fs LABs LAB LAB (ak1$ SemaSI)
LT SR

i




2. FPGA ICYRPISI VE OZELLIKLERI

= LABs (Logic Array Blocks) birimleri ise CLB yapilarinin bir araya getirilmesi

1le elde edilir.

Giris / Cikas
Elemanlan (I0Es)

/ e

Gomiilii Bellek
Bloklan

Gomiilii Bellek

Bloklar:

Giris / Cilag
Elemanlarn (10Es)

=

I
= 10Es || 1ABs LABs LABs |-{{ i< LABs |=l4 k| 1ABs |- LABs b .____
T 111 T 111 I
IOEs LABs LABs LABs =/ 4 < LABs || Rl raBs |- - LABs oo
_LI_II(EIS_I—'- | LABs |- AB -| }-{ LABs |14 |- LABs - LABs I
4 1o R 4 tass F LABs LABs |-/ 4 Fld iars {0 R rass R - LABs oo
T T T T T T T T T T T T 11

LABs

LADBs

A
Loy

o
-

Ly

LABs

LR -

LABs

1.LABs

jasis

A

o]

:

LABs

Bl

iR

-‘IIIOEISI)--‘ILIA[:SI}- e 1 +-||L|A?S||-
-|I ll()F;s | - —{II,IM:S ~- LLABs LABs g |- LaBs |-

LABs

LABs

LABs

LABs

LABs

OCCICIC S ST —

$iiH
i

LADBs

|

FPGA blok
diyagrami
(akis semasi)




2. FPGA ICYAPISI VE 0ZELLiKLERI

= Baslica FPGA treticileri;
= Xilinx,
= Altera,
= Lattice,
= Microsemi,
= Quicklogic,

= SiliconBlue firmalaridir.

= Bu firmalardan pazarin biiyilkk ¢cogunluguna sahip olanlar Xilinx ve Altera
firmalar olarak bilinir.

= Xilinx firmas1 FPGA’ y1 ilk {reten ve su anda diinyadaki en biiylik FPGA

lireticisi olan sirkettir.



SONRAKI DERS KONUSU




ILERI SEYISAL SISTEMLER

3- VHDL’ e Giris

Ders sorumlusu:

Do¢. Dr. Hasan KOYUNCU



3.VHDL’ E GiRiS

= VHDL, Yiiksek Hizli Tiimlesik Devre Donanim Tanimlama Dili (Very
High Speed Integrated Circuit Hardware Description Language) olarak bilinir.

= VHDL, donanim parg¢alarini modellemek i¢in kullanilir.

= VHDL’in yamisira kullanilan bir diger donamim tanimlama dili de
Verilog’dur.

VHLD Verilog

Ada diline benzer C diline benzer

Veri yapilart 6nceden belirlidir ve yeni veri yapisi

Tasarimce1 kendi veri yapilarini tanimlayabilir
tanimlanamaz

Tasarlanan prosediir ve fonksiyonlar kiitiiphaneye

doniistiiriilerek kullanilabilir Paket ve kiitiiphane yapilar1 bulunmaz

I/O baglantilar1 ve devrenin isleyisi ayr1 bloklar I/O baglantilar1 ve devrenin isleyisi ayn1 blok i¢inde

olarak yazilir tanimlanmalidir



3.VHDL’ E GiRiS

= VHDL programlama dilinde kiitiiphane ve paket yapilarinin
olusturulabilmesi, karmasik sistemlerin modellenmesini ve yonetimini
kolaylastirir.

= Bu nedenle karmasik sistem tasarimlarinda daha cok VHDL dili kullanilir.

= Verilog dili O6grenilmesi daha kolay oldugundan genelde baslangic
seviyesinde programcilar tarafindan tercih edilir.

= VHDL dili ABD Savunma Bakanligi tarafindan gelistirildiginden daha
biirokratik bir yapidadir ve kiititphane gelistirme imkani sundugundan ileri
seviye tasartmcilar tarafindan tercih edilir.

©



3.1 VHDL Tasarimda Metodolojiler

= VHDL tasarim metodolojileri 4 alt baslikta incelenir. Bunlar; soyutlama,
modiilerlik, hiyerarsik tasarim ve modelleme teknikleri seklinde siralanir.

3.1.1 Soyutlama

= Gliniimiizde ¢ok karmasik olan ve fazlaca eleman igeren yongalarin
dogrudan 1slenmesi zorlasmaktadir.

= Bu karmasiklig1 daha kolay yonetebilmek adina cesitli soyutlama seviyeleri
ve bu seviyelere dair ana hatlar belirlenmistir.

= Soyutlama, tasarimdaki gereksizlikleri atmak ve veriyi yonetilebilir
seviyede tutmak 1¢in kullanilir.



3.1.1 Soyutlama

= Soyutlama ile komplike sistemler daha basit bir modele indigenebilir.

Davranissal Seviye | co———p — f — Yiiksek Seviye

’
,/' i ] O
,/' 5,4 RT Seviyesi —

Soyutlama = |

Seviyeleri \ 5 |
. ‘?‘ Mantik Seviyesi ——
\ i
> :
\ : >
\ 1
SO
A S
\
3
i Donanim Diizeni Mantik Mantik
i Seviyesi _> Hiicresi Hiicresi
i Diistik Seviye



3.1.1 Soyutlama

=Yiiksek seviye soyutlama cok onemli veriler iizerine yogunlasirken, diisik
seviye soyutlama ayrinti icerir ve onceki asamalarda goz ardr edilen bilgiler
gereklidir.

= Yiiksek seviye soyutlama —
. . . o % | Davramsgsal Seviye > — f B Yiksek Seviye
icin gerekli tasarim, diisik _ _

seviye soyutlamadaki '

; — —(O—
tasarimdan daha hizhidrr. | [ rscien | —p

= Diislik seviye |
! 5 |
soyutlamada tasarlanan | Mantk Seviyes | emm—

yapilar daha karmasikair, | S

ancak bu seviye temelli ﬁ H ﬁ

olusturulan devreler |

tasarlanmasi gereken | Donanim Diizeni Mantik Mantk

d d h k d : Seviyesi —p Hiicresi Hiicresi \/
evreye daha yakindir ve DUtk Soviye

daha dogru sonuc iiretir. ﬂ ﬁ ﬁ



3.1.1 Soyutlama

- Ayrmtili sistem tasarlanirken e - a—
ilk olarak; g — — |
- yiiksek seviye — j% —CO—
soyutlamadan giris yapihr, KSovest | == T r
= sistemdeki Mantik Seviyesi | eom—) @ID*D B
vazgecilemezler belirlenir, >
' F——i——
= sistem daha iyi Donanim Diizeni Maniik Manik
anlasildikca detaylar L S > e e Dﬁﬁﬁkvs‘wiye
artirilarak diisiik seviye ﬂ ﬁ ﬁ :
soyutlamaya gidilir. e ’



3.1.1 Soyutlama

Davranissal Seviye: Modelin fonksiyonel  input
tanimi1 yapilarak ana hatlar belirtilir.

y = f(x) output

input:

inputs

= Saat (Clock) sinyalinin  kullanilmadigi
durumda sinyal gecisleri asenkron olacaktir ve
bu gecisler anahtarlama zamanina baglidir. Davranissal Seviye Ornegi

output=input:+(input-*input:)

= Davranissal modelleme, devre davranisin1 tanimlamada en basit yoldur.
= Davranissal seviye i¢inde tanimlanan tasarimlar simiilasyon amacl isletilir.

= Bu tasarimlarin i¢inden yalnizca ¢ok basit olanlar: sentezlenebilir.

©



3.1.1 Soyutlama

input.

y = f(x) output

input:

Davranissal Seviye: Davranigsal seviye ¢ok  inputs
biyiik tasarimlar icin miimkiin goriilmez.

output=input:+(input*inputs)

Davranissal Seviye Ornegi

= Ancak, veri yolu (Bus) sistemler1 veya karmasik algoritmalar
sentezlenebilirlik kaygist olmadan tanimlanabilir.

= Test bench’ de hafiza birimleri iceren bir modelin simiilasyonu i¢in giris
(uyaric1)) tanmmlamalarmmin belirlenmesi davranissal seviye tasarima

ornektir.
©



3.1.1 Soyutlama

RT Seviyesi (RTL): RTL (Register Transfer Level), saat isaretine gore veri
aktarnimi  yapan ardisil devreler ile bu devreleri destekleyen
kombinasyonel lojik yapilarin tanimlandigi tasarim diizeyidir.

= Toplayic1 ve karsilastirici gibi fonksiyonel birimleri, register gibi hafiza
birimlerini ve coklayici gibi veri secici elemanlari igertir.

= RTL seviyesinde verinin nasil islenecegi ve iletimin nasil saglanacagi
belirlenir.

Saatli Process Kombinasyonel Process
Durum Lojik
Saat D RTL Genel Gésterimi
Reset {@)




3.1.1 Soyutlama

RT Seviyesi (RTL): RTL seviyesinin en 6nemli noktasi tasarlanan yapi

icinde ortak clock sinyaline gore islem yapilmasidir.

= Bu noktada veri sinyalleri yalnizca clock sinyalinin tetik kenarinda

isleme tabi tutulur.

= Bu nedenle bu seviyede, asenkron sistemlerde ardisil baglanan hafiza
birimlerinde oldugu gibi biuiyuk sinyal gecikmeleri meydana gelmez,

ayrica anhk atlamalar (glitch) gerceklesmez.

Saatli Process

Kombinasyonel Process

o9

Saat

Reset

Durum
Lojigi

FF

RTL Genel Gosterimi

()



3.1.1 Soyutlama

RT Seviyesi (RTL): RT seviyesindeki bir simiilasyon icin tek bir clock
periyodu isletildiginde, biutiin sinyallerin denge degerlerine ulasip
ulasmadigr hakkinda kesin bir sey soylenemez.

= Yani bu seviyede yapilan simiilasyonlar, sistemin gercek zamanlama
davranisi ile ilgili bilgi vermez.

= Diger bir deyisle, yalnizca sisteme dair senkron davranis modellenir.

Saatli Process Kombinasyonel Process
A 37
Durum ( Lojik
Saat D RTL Genel Gésterimi
Reset {@)




3.1.1 Soyutlama

RT Sevivyesi

(RTL): VHDL’de fonksiyonel davranislar process

modellenir.

le

= RT seviye tasarimda kombinasyonel ve saatli (clock iceren) olmak lizere
iki1 tip process mevcuttur.

Saatli Process

Kombinasyonel Process

oo

Saat

Reset

Durum
Lojigi

FF

RTL Genel Gosterimi



3.1.1 Soyutlama

Mantik Seviyesi: Mantik seviyesinde amaglanan tasarim, lojik kapilar ve
hazifa (depolama) elemanlarindan olusan bir ag yapis1 seklindedir.

= Herhangi bir tasarim mantik seviyesinde nitelendiginde, tasarimda
kullanilan kapi gecikmeleri simiilasyona uygulanabilir.

Py

Mantik Seviyesi Ornegi




3.1.1 Soyutlama

Donanim_Diizeni (Layout) Seviyesi: Soyutlamanin en alt kismi1 donanim
diizeni seviyesidir.

= Bu seviyede gerekli tasarim farkl hiicreler iizerine aktarilir ve hiicreler
arasindaki baglantilar yapilr.

= Donanmim diizeni tamamlandiktan sonra devre tiretime hazir hale gelir.

HE—o———aun

Mantik Mantik
Hiicresi Hiicresi

[ °

Layout Seviyesi Ornegi




3.1.1 Soyutlama

Donanim Diizeni (Lavout) Sevivesi: Donanim dilizeninin tasarlanmasi
sonrasi baglanti uzunluklari, yani sinyallerin gecikmeleri belirlenir.

= Mantik birimlerindeki gecikmelerin hesaba katilmasindan sonra biitiin
devrenin zamanlama davranisi bulunur.

== =

Mantik Mantik
Hiicresi Hiicresi

W

Layout Seviyesi Ornegi




3.1.2 Modulerlik

= Modiilerlik, biiyiik bir tasarimin alt parcalara (birimlere) ayrilarak ele
alinmasi ve programlanmasi anlamina gelir.

= Bu tip tasarima modiiler tasarim denilir.

= VHDL kapsaminda olusturulan modiler tasarimlar, hem kolay tasarim
yapilmasini hem simiilasyonun kolaylastirilmasim1i hem de eszamanh
farkh kullanicilarin calisabilmesini saglar.

3.1.3 Hiyerarsik Tasarim

= Tasarlanacak olan biiyiik bir sistemin alt modiillerden olusmasimi1 saglar
(modiilerligin tiimlesmis halidir).

()



3.1.3 Hiyerarsik Tasarim

= Tasarim hiyerarsisinin her ayr1 bolimii farkh bir soyutlama seviyesinde
modiil icerebilir.

= Boylelikle tasarim daha kolay yonetilebilir hale gelir.

= Hiyerarsik tasarim, hem yazilimcilar hem de donanmimcilar tarafindan
kullanilir.

= Hiyerarsik tasarim ve modilerlik; VHDL i¢indeki kiitiiphane, bilesen ve
paket kavramlari tizerinden saglanur.

©



3.1.4 Modelleme Teknikleri

= VHLD tasarim kapsaminda temel olarak ii¢ tip modelleme teknigi
mevcuttur:

1-) Veri akis (Dataflow),
2-) Davramissal (Behavioral),
3-) Yapisal (Structural).

= Veri akis (Dataflow) modeli, sistemin girisine sunulan bir sinyalin ¢ikisa
kadarki es zamanli akisin1 modelleyen tasarim teknigidir.

= Bu model alt tasarim diizeyi olmaktadir ve devredeki AND, OR, XOR gibi
yerlesik bilesenler arasi giris cikis baglantilar1 gosterilerek modelleme

yapilmaktadir.
()



3.1.4 Modelleme Teknikleri

= VHLD tasarim kapsaminda temel olarak ii¢ tip modelleme teknigi
mevceuttur:

1-) Veri akis (Dataflow),

2-) Davramissal (Behavioral),

3-) Yapisal (Structural).

= Davranissal modellemede gelistirilecek olan modelin giris ve ¢ikis iliskisi
(islevi) davramssal olarak ele alinir.

= Diger bir deyisle, sistem ¢ikislarinin girislere verdigi tepki modellenir
ve modele dair i¢ yapi (kap1 vb. eleman baglantilar1) onemsenmez.

= Veri-akis modeline gore daha ust tasarim teskil eder. Bu nedenle for,
case ve if gibi komutlar bu modelde isletilir.



3.1.4 Modelleme Teknikleri

= VHLD tasarim kapsaminda temel olarak ii¢ tip modelleme teknigi

mevcuttur:

1-) Veri akis (Dataflow),

2-) Davramissal (Behavioral),

3-) Yapisal (Structural).

= Yapisal modellemede 1se biitiin bir tasarimin, farkli gorevleri igeren alt

modiillerden meydana geldigi diistiniiliir.

Alt modiil drnegi

(Davramissal model ile tasarlannus)

> VHDL
—> Kodu

—

Yapisal model ile gerceklenmis tasarim

>—P
L

VHDL
Kodu

VHDL
Kodu

v

VHDL
Kodu

Yapisal tasarim
modelinde alt
modiillerin
kullanimi

()



3.1.4 Modelleme Teknikleri

= VHLD tasarim kapsaminda temel olarak ii¢ tip modelleme teknigi
mevceuttur:

1-) Veri akis (Dataflow),
2-) Davramissal (Behavioral),
3-) Yapisal (Structural).

= Bu modiiller bir araya getirilerek biiyiikk ve karmasik sistem tasarimi
saglanr.

Yapisal model ile gerceklenmis tasarim

> » VHDL

Alt modiil ornegi > Kodu Yapisal tasarim
(Davranissal model ile tasarlannus) modelinde alt

—» vuDL ——> i modiillerin

Kodu ™ - kullanimi

- » VHDL | |
Kodu
>—>

()



3.1.4 Modelleme Teknikleri

= VHLD tasarim kapsaminda temel olarak ii¢ tip modelleme teknigi
mevceuttur:

1-) Veri akis (Dataflow),

2-) Davramissal (Behavioral),

3-) Yapisal (Structural).

= Davranissal ve / veya veri-akis modeli kullanilarak tretilen alt birimlerin

yapisal birlestirilmesi, yapisal modelleme kapsaminda ele alinir.

Alt modiil drnegi

(Davranissal model ile tasarlannus)

—P>
—P

VHDL
Kodu

—>

Yapisal model ile ger¢eklenmis tasarim

>—P
»—

VHDL
Kodu

VHDL
Kodu

v

VHDL
Kodu

Yapisal tasarim
modelinde alt
modiillerin
kullanima

©



3.1.4 Modelleme Teknikleri

= VHLD tasarim kapsaminda temel olarak ii¢ tip modelleme teknigi

mevcuttur:

1-) Veri akis (Dataflow),

2-) Davramissal (Behavioral),

3-) Yapisal (Structural).

= VHDL tasarimda genel olarak her bir alt birim (modiil) davranissal
modelleme ele alinarak tasarlanir ve bitiin modiiller yapisal modelleme
kullanilarak birbirine baglanir.

Alt modiil drnegi

(Davranigsal model ile tasarlannusg)

> VHDL
—p Kodu

—>

Yapisal model ile ger¢eklenmiys tasarim

>
P

VHDL
Kodu

VHDL
Kodu

v

VHDL
Kodu

Yapisal tasarim
modelinde alt
modiillerin
kullanimi

@



3.1.4 Modelleme Teknikleri

OZETLE

= VHLD tasarim kapsaminda temel olarak ii¢
tip modelleme teknigi mevcuttur:
Es zamanl (paralel)

1-) Veri akis (Dataflow), »  isletilecek kod ile
2-) Davramissal (Behavioral), tasarimdr
3-) Yapisal (Structural).

\

j Ardisil (siral1) + Es zamanlh (paralel)

. . isletilecek kod temelli tasarimdir
Birden fazla veri akis ve/veya

davranissal tasarimin
birlestirilmesidir.
Yapisal model ile ger¢eklenmiys tasarim

> »  VHDL
Alt modiil érnegi ; » Kodu Yapisal tasarim
(Davranigsal model ile tasarlannusg) modelinde alt
—p e~ > » modiillerin
Kodu —> YEEUL kullanimi
’ VHDL

Kodu

>—> @




SONRAKI DERS KONUSU
RIS LN

'
4- VHDL TASARIM BOLUMLERI




ILERI SEYISAL SISTEMLER

4- VHDL TASERIM BOLUMLERI

Ders sorumlusu:

Do¢. Dr. Hasan KOYUNCU



4. VHDL TASARIM BOLUMLERI

= VHDL dilinde 3 ayr1 ana tasarim yapisit mevcuttur. Bunlar; varhk (entity),
mimari (architecture) ve kiitiiphane (library) seklindedir.

= Bu boliimlere ek olarak, bazi1 kaynaklarda konfigiirasyon boliimii ayr1 bir
baslikta ele alinar.

= Library: Halihazirda mevcut olan veya kullanici tarafindan hazirlanan
tamimlamalarin gruplandigi yapidir. Bu tanimlama gruplar1 (kiitiiphaneler
veya paketler) thtiyaca gore tanimlanir ve kullanilir.

= Entity: Tasarimin dis ¢evresi ile baglanti araylziini olusturur. Bu kisimda
giris ve ¢ikis portlari belirtilir.

= Architecture: Modele dair davranisin tanimlandigi boliimdiir.

= Konfigiirasyon: Alt modillerin bir araya gelerek biitiin bir sistem
tasariminin nasil olusturuldugunu gosteren bolimdiir. @




4.1 Varlik (Entity)

= Varhik (Entity) bildirimi, tasarlanacak sisteme dair giris ve ¢ikis
birimlerinin belirtildigi boliimdiir.

= VHDL tasarimlarda yalmizca bir adet entity tanimlanir ve bu tanimlama
kiitiiphane (paket, library) tanimlamasi sonrasinda yapilir.

= Ayn1 entity tanimlamasi {zerinden birden fazla architecture ve
konfigiirasyon tanimlamasi yapailabilir.

= Port olarak isimlendirilen ve sistemin dis ¢evresi ile baglantisim1 olusturan
girdi ve ¢ikt1 birimlerinin tanimlamalar1 entity boliimiinde vertlir.

= Portlar; giris, ¢ikis, hem giris hem ¢ikis veya tampon olacak sekilde dort
farkli formatta tanimlanir. @



4.1 Varlik (Entity)

=in: Sisteme disaridan gelen sinyalleri tanimlarken kullanilir ve yalnizca
okuma yapilabilen port tanimlamasidir.

= out: Sistemden c¢ikis yapacak olan sinyalleri tanimlarken kullanilir ve
yalnizca yazma yapilabilen port tanimlamasidir.

= inout: Sisteme hem giris hem de ¢ikis yapacak olan sinyaller i¢in kullanilan
port tanimlamasidir.

= buffer: out portu gibi davranir ve bu porttan farkli olarak sistem icinde
okuma yapilabilir.

©



4.1 Varlik (Entity)

= Jenerik (Generic) ise entity’ ye ait baz1 parametreler i¢in sistem bilesenleri
tizerine kod boliimiinde kolaylik saglayan tanimlamadir.

= Statik bilgi (sabit deger) saglayan tanimlamalardar.

= Generic tanimlamasi entity icinde port bilgisinden once verilir ve yazilan
tamimlama entity ve entity’ nin iliskili oldugu architecture boliimlerinde
kullanilabilir.

= Generic’ lere dair kullanimlardan bazilar1 sunlardir:
= Port boyutlarimin ifadesi

= Alt bilesen sayisinin nitelenmesi

= Zamanlama oOzellikler1

= Tasarima dair fiziksel 6zellik tanimlamalari

= Architecture i¢inde belirtilecek vektorlerin uzunluk tanimlamalar

= Dongii sayis1 atanmast {e)



4.1 Varlik (Entity)

= Entity yapisinin gosterimi su sekildedir:

Entity entity ismi is
Generic (Jenerik arayliz listesi);
Port (port 1smi: mod tiir;
diger portlar...);
End entity i1smi;

Ornek 4.1: Yapisinda clock ve reset sinyal girisleri, 16 bitlik say1 girisi ve 8 er

bitlik iki say1 ¢ikisi i¢in port tanimlamasinin yapildigi entity kodunu yaziniz.

Entity Uygl is
Port (clk: in std logic;
rst: in  std logic;
sayl_16b: in std logic vector(15 downto 0);
sayll 8b: out std logic vector(7 downto 0);
sayl2 8b: out std logic vector(7 downto 0));
End Uygl;




4.1 Varlik (Entity)

Ornek 4.2: girisl, giris2 ve secim isimli ii¢ giris portu ile sonuc isimli bir ¢ikis
portuna sahip 2x1 MUX i¢in entity tanimlamasi yapiniz.

Entity mux_birimi is .
Port (girisl: in std logic; girisl—
giris2: in std logic;
secim: in std logic; giris2—

\

2X1
MUX

SO0Nnuc

sonuc: out std logic); j/
End mux_birimi; secim

Ornek _4.3: 16 bitlik adres giris bilgisi gerektiren RAM icin, generic
tanimlamasini adres bit sayisi tizerinden belirterek gerekli entity kodunu yaziniz.

Entity Ram_birimi is
Generic (adres_boyut: integer := 16);

End Ram_birimi;

Port (adres: in std logic vector(adres boyut-1 downto 0);

©



4.1 Varlik (Entity)

Entity kodu vazilirken bazi kurallar mevcuttur:

1. Entity 1smi biitlin bir tasarimin ismidir ve bir harfle baslamak kosuluyla
harf, alt cizgi ve rakam icerebilir.

2. Bir generic, port veya pasif ifade kullanmadan yalin halde entity
tanimlamasi yapilabilir.

3. Aym tiir ve port tanimlamasi (modu) ayni olan tanimlamalar, birbirlerinin
arasina virgil (,) konularak yapilir. Herbir port tanimlamasi noktali virgiil (;)
ile ayrilir.

Entity elevator control is
Port (yukari, asagi, dur, acil: in std logic;
yon_kontrol, diger islem: out std logic);
End elevator control;




4.1 Varlik (Entity)

Entity kodu vazilirken bazi kurallar mevcuttur:

4. Sistem tasarimina bagli olarak entity kodunda tiir, alt tir ve sabitler
tanimlanabilir. Tanimli ifadeler ise entity’ ye bagli olan biitiin architecture

boluimlerinde kullanilabilir. .*

*

Entity deneme is
Port (A, B, C, D: in std logic;
E, F: out std logic);
signal degl: std logic;

End deneme;

constant deg2: integer :=20;

Library ieee;
Use iece std logic 1164.alls

Entity demux 1 is
Port (A, sel: in std logic;
B, C: out std logic);
End demux_1;

5. Entity tanimlamasi kiitiiphane tanimlamasi sonrasi yapilir.



4.1 Varlik (Entity)

Ornek 4.4: 16 bitlik adres giris bilgisi gerektiren RAM ic¢in, generic
tanimlamasim1 adres bit sayisi lizerinden belirterek gerekli entity kodunu
yaziniz.

Entity RAM_birimi is

Generic (adres_boyut: infeger :=16);

Port (adres bilgisi : in std logic vector(adres boyut-1 downto 0);
End RAM_ birimi;

4.2 Mimari (Architecture)

= Mimari (Architecture) bildirimi, tasarirma dair gerceklestirilecek i1sin
tanimlandig1 bolimdir.

= Diger bir deyisle, tasarim davranisinin ve i¢ yapisinmin tasarlandigi

boliimdiir.
©



4.2 Mimari (Architecture)

= Ayrica modellemede sirali veya paralel islem tiplerinden hangisinin

kullanacagi da bu boliimde belirtilir.

= Architecture kodu genelde dort farkli sekilde yazilabilir: 1-Veri akis, 2-

Yapisal, 3-Davranissal, 4-Karma.

= Architecture yapisinin gosterimi su sekildedir:

Architecture architecture ismi of entity ismi is
bildirimler (sinyal, degisken vb. tanimlamalar);
Begin
architecture govdesi
End architecture ismi;




4.2 Mimari (Architecture)

Ornek 4.5: Yan tarafta goriilen devre icin

gereklt VHDL kodunu yaziniz.

Library ieee;
Use iece.std logic 1164.all;

Entity tumlesik devre is

Port (giris1, giris2, giris3: in std_logic;
cikisl: out std logic);

End tumlesik devre;

Architecture icyapi of tumlesik devre is
signal aral: std logic;

Begin
aral <= giris] and giris2;
cikisl <= aral or giris3;

End icyapi;

giris3 Dﬁkm
giris| }

giris2

Architecture kodu asagidaki
gibi ara baglant1 kullanmadan
da yazilabilir.

cikisl <= (girisl and giris2) or
giris3;

()



4.2 Mimari (Architecture)

Ornek 4.5: Yan tarafta goriilen devre icin
gerekli VHDL kodunu yaziniz.

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

giris3

girisl

giris2

cikis1 i

1

}

0

Dﬁkisl

giris3

giris1 aral_i

o]

J%)

T
: )

RTL_AND

giris2

;) 7

RTL_OR

> cikis1



4.2 Mimari (Architecture)

Architecture kodu vazilirken bazi kurallar mevcuttur:

1. Biitiin architecture yapisinin tek ismi olur ve bu isim architecture ifadesi

sonrasi yazilir.

= Architecture i1smi sonrasinda sirasiyla
belirtilmelidir.

‘of”

ifadesi ve entity 1smi

= Biitlin bir architecture taniminin yapildig: satir ‘is’ ifadesi ile sonlandiktan

sonra kod tanimlamalarina giris yapulir.

Architecture icyapi of tumlesik devre is




4.2 Mimari (Architecture)

Architecture kodu vazilirken bazi kurallar mevcuttur:

2. Ik satir (architecture tanmiminin yapildigi satir) sonrasinda begin
(baslangi¢) komutuna kadar ¢esitli tanimlamalar (sinyal, degisken, sabit, alt
program, bilesen ve veri tiiri gibi tanimlamalar) yapilir.

= Ara deger atamasinda kullanilacak olan ara sinyal tanimlamalari,
architecture 1lk satir1 sonrasinda begin komutuna kadar olan boliimde

yapilmalidir.
signal aral: std logic; .
S HO8IG - Begin
aral <= giris1 and giris2;
s cikis]l <= aral or giris3;
3. Begin ve end komutlart arasi tasarim | End icyapi;
tammimlama bolimiidiir. Bu bolimde

sinyal atamalari, process ve bilesen
cagrilmasi gibi 1slemler gerceklestirilir. @



4.2 Mimari (Architecture)

Architecture kodu vazilirken baz kurallar mevcuttur:

4. Architecture i¢ginde tanimlanan biitiin 1slem ve ifadeler (sirali komutlar
hari¢) es zamanli isletilir.

5. Architecture bittiginde (begin komutunun karsilig1 olarak) end komutu
kullanilir ve bu komut sonrasi basta tanimlanan architecture ismi yazilir.

End icyapi;

6. Her architecture yapisinin bir entity’ ye bagli olmasi gerekir.

= Bir entity birden fazla architecture igerebilir, ancak tersi durum s6z konusu

degildir.
€



4.2 Mimari (Architecture)

Architecture kodu vazilirken bazi kurallar mevcuttur:

6. Her architecture yapisinin bir entity’ ye bagli olmas1 gerekir.

= Bir entity birden fazla architecture igerebilir, ancak tersi durum s6z konusu
degildir.

= Bu durumda 1se herbir architecture isminin farkli olmasi gerekir.

= Kisaca bir architecture yalnizca tek bir entity ile iliskili olabilir.

Architecture icyapi of tumlesik devre is

—> burada architecture ismi icyapi, bagli oldugu entity ise tumlesik devre

olarak gortilir.
©



4.2 Mimari (Architecture)

Ornek 4.6: Girise
gelen 16 bitlik
say1y1 1K1 pargaya
bolen, clk ve rst
sinyallerine gore
1slem yapan tasarim
i¢cin gereklt VHDL
kodunu yazniz.

Library iece;
Use ieee.std logic 1164.all;

Entity Uyg bolum is

Port (clk, rst: in std logic;
sayl 16b: in std logic vector(15 downto 0);
sayil 8b: out std logic vector(7 downto 0);
say12 8b: out std logic vector(7T downto 0));

End Uyg bolum:;

Architecture davranis of Uyg bolum is
Begin
Process (clk, rst)
Begin
If (rst="1") then
sayil 8b <="00000000"; -- veya sayil 8b <= (others =>"'0");
sayi2 8b <="00000000"; -- veya sayi2 8b <= (others =>"'0");
Elsif rising edge(clk) then
sayll 8b <=sayi 16b(7 downto 0);
sayi2 8b <=say1 16b(15 downto 8);
End if;

End process; O
End davranis; @




4.2 Mimari (Architecture)

Ornek 4.6: Girise gelen 16 bitlik say1y1 iki parcaya bolen, clk ve rst

sinyallerine gore islem yapan tasarim i¢in gerekli VHDL kodunu yaziniz.

rst

)

clk

)

Vivado /
Elaborated Design Ciktisi

CLR

> C

sayi_16b[15:0]

1

D

sayi1_8b_reg[7:0] (RTL Sematik Diyagramz)

Q } sayi1_8b[7:0]

RTL_REG_ASYNC

sayi2_8b_reg[7:0]

CLR

15:8

Q > sayi2_8b[7:0]

RTL_REG_ASYNC



4.3 Kiitiiphane (Library)

= Bir tasarim i1¢inde VHDL kaynak kodlarinin derlenmesi i¢in Kiitiiphane
(Library) yapilarina ihtiya¢ duyulur.

= Kullanict kendisinin tanimlayacagi paket (package) yapilari lizerinden
kendi olusturacagi kiitiiphaneyi kullanabilecegi gibi, derleyicide mevcut
olan kiitiiphaneleri de kullanabilmektedir.

= Kiitiiphanenin kullanima acilmasi 1¢in library komutu kullanilir.

= Komut sonrasi kullanilacak kiitiiphane ismi belirtilir (Library ieee, vb
gibi).

©



4.3 Kiitiiphane (Library)

Calisma__Kiitiiphanesi: Bir tasarim kapsaminda olusturulmus VHDL
kodlarini kapsayan kiitliphanedir.

= Mevcut tasarim kodlar1 her zaman ¢alisma kiitiiphanesinde derlenmektedir.

= Bu nedenle calisma kiitiiphanesi halihazirda mevcut oldugundan ayrica bir
tanimlama 1le program iginde belirtilmez.

= Derleyici programda varsayilan kiitiiphane “work” olarak bilinir.

= Kullanic1 tarafindan kullanilabilecek olan paket (package) tanimlamalari
bu kiitiiphane kapsaminda incelenebilir.

()



4.3 Kiitiiphane (Library)

= Veri tiirleri, alt programlar, sabitler, sinyal ve bilesenler gibi pek cok
tanimlamay1 i¢inde bulunduran genel yapilara paket denir.

= Kullanict  isletilmesi  gereken bir¢ok tanimlamayir paket icerisine
yerlestirerek, bu tanimlamalarin biitin modil ve alt modillerde
kullanilmasini saglayabilir.

= Paket kullanimi, gerekli tanimlamalarin birden fazla kez yapilmasini onler
ve tasarim kolaylig1 saglar.

= Paket yapisi1 bildirim ve govde olmak tizere iki alt baslikta tanimlanir.



4.3 Kiitiiphane (Library)

= Paket bildirim boliimiinde veri tiirii tanimlamalar1 ve ¢esitli bildirimler

(sabit, fonksiyon ve prosediir) yapilir.

Package paket 1smi is
paket bildirimleri
End package paket ismi;

= Paket govdesi ise alt program tanimlamalarimi i¢cermektedir. Bu bolim
bildirim kismini basitlestirerek derleme islemini kolay hale getirir. Yine

fonksiyon ve prosediirler bu boliimde yer alir.

Package body paket ismi is
alt program tanimlamalar1
End package body paket ismi;




4.3 Kiitiiphane (Library)

P Paket Olusturma Ornegi
Paket Bildirimi

Package deneme is
constant katsayi deg: integer;
type hava durum is (bulutlu,karli,gunesli);
Function sayma(k: infeger) return integer;
End package deneme;

Paket Govdesi

Package body deneme is
constant katsay1 deg: integer :=10;
Function sayma(k: integer) return integer is
Begin

End sayma;
End package body deneme;




4.3 Kiitiiphane (Library)

Standard Kiitiiphanesi: Standard (Std) kiitiiphanesi halihazirda VHDL
iginde tanimli bir kiitliphanedir ve kullanici tarafindan tanimlanmasina gerek
yoktur. On tanimli VHDL bilesenlerini igerir.

= Kiitiiphane kapsaminda cesitli bilesenler mevcuttur. Bu kiitiiphane 1ki paket
icerir: I-Standard, 2-Textio

= Standard bashig1 altinda bit, boolean, integer gibi basit veri tanimlamalari
ve tanimlamalara dair fonksiyonlar yer alir,

= Textio paketi 1se metin dosyasi islemleri kapsaminda prosediir, tiir ve
fonksiyonlar1 barindirir.

©



4.3 Kiitiiphane (Library)

IEEE Kiitiiphanesi: Bu kiitiiphane kapsaminda en son ve gilincel paket
IEEE Standart 1164 paketidir. Kullanilan paketler ve ilgili o6zellikler
asagidaki gibidir:

Use ieee.std logic 1164.all : std logic, std ulogic, std logic vector,
std ulogic vector ile 1lgili fonksiyonlar1 igerir.

Use ieee.std logic arith.all : signed, unsigned, integer, std ulogic, std logic
ve std logic vector tirler1 1¢in aritmetik, donlisim ve karsilastirma
fonksiyonlarimi kapsar.

Use ieee.std _logic unsigned.all : isaretsiz aritmetik fonksiyonlar1 kapsar.

Use ieee.std logic signed.all : 1saretli aritmetik fonksiyonlar1 kapsar.

©



4.3 Kiitiiphane (Library)

Use ieee.math_complex.all : karmasik sayilarla ilintili fonksiyonlar1 kapsar.
Use ieee.math_real.all : gercek sayilarla ilintili fonksiyonlar1 kapsar.
Use ieee.numeric_bit.all : bit tiiriinde aritmetik 1slem fonksiyonlarimi kapsar.

Use ieee.numeric std.all : std logic tiiriindeki verilerin aritmetik islem
fonksiyonlarini igerir. std logic arith paketinin alternatifidir.

Use ieee.std logic misc.all : std logic 1164 paketini destekler nitelikte veri
tiirleri, fonksiyonlar1 ve sabitleri kapsar.

Use ieee.std logic textio.all : dosyalara veri yazma ve dosyalardan veri
okuma kapsaminda prosediirleri igertir. @



4.3 Kiitiiphane (Library)

= Kullanic1 paket (package) yapilarim1 kullanarak kendi kiitliphanesini
olusturabilir.

Ozetle

= Calisma kiitiiphanesi derlemenin yapildigr temel kiitiiphanedir ve
tamimlanma gereksinimi yoktur. Paket tanimlamalar1 bu kiitiiphane
kapsaminda yapilir.

= Standard kiitiiphanesi 6n tanimli bilesenlerin bulundugu kiitiiphanedir ve
(Textio harici) tanimlanma gereksinimi yoktur.

= Devre tasarimlarinda IEEE kitiiphanesinin kendisine ve kullanilacak alt
tiire dair tammmlama her zaman yapilmalidir.

= Bahsi ge¢en kiitliphaneler disinda treticiye (Altera, Xilinx, vb. gib1) ozel
kiitliphaneler de mevcuttur. @



SONRAKI DERS KONUSU

2- VHDL’DE NESNELER



ILERI SEYISAL SISTEMLER

9- VHDI’DE NESNELER

Ders sorumlusu:

Do¢. Dr. Hasan KOYUNCU



3. VHDL’DE NESNELER

= Nesneler, VHDL yapisi1 i¢cinde genel olarak li¢ baslikta tanimlanir. Bunlar;
sinyaller, degiskenler ve sabitlerdir.

= Sinyal ve degisken verilerine dair degerler tasarim kapsaminda siirekli
farklilik gosterebilirken, sabit olarak tanimlanan verilerde deger hi¢cbir zaman
degismez.

3.1 Sinyaller (Signals)

= Sinyaller, bir tasarimda devre i¢in ara baglantilar1 saglayan nesnelerdir.

= Diger bir deyisle, sistemdeki veri akisini agiklayan nesnelerdir.

(=)



3.1 Sinyaller (Signals)

= Sinyaller, architecture i¢cinde eszamanli yapilar arasindaki fiziksel iletisimi
saglar.

= Sinyaller; package, architecture ve entity i¢cinde tammmlamir, ancak
process, procedure ve function i¢inde tammmlanamazlar.

= Package ve entity i¢cinde tamimlandiklarinda alt birimlerde (farkl
architecture yapilarinda) tekrar tanéimlanmalarina gerek yoktur.

= Tekil bir architecture i¢inde tanimlanan sinyal 1se yalnizca o0 mimari i¢inde
1sletilebilir.

©



3.1 Sinyaller (Signals)

= F,, C, ve C, verileri sinyal nesnesi olarak 1fade edilir.

= Sistem 1¢indeki Yart Toplayici iki bilesenin sinyal(ler) ile baglanmasi
gereklidir.

A :>—— A FR—A ¥ — F
| YT YT ;

B I>— B Cout Cl B Cou

Cin 5 I E C i

________________________________________________________

Bir bitlik tam toplayic: lizerinden sinyal tamimlama 6rnegi {0)



3.1 Sinyaller (Signals)

= Benzer sekilde C, ve C, sinyalleri bilesenlerden mantik kapisina bilgi
tasimaktadir.

= Bu noktada sinyaller, devre yollarinin tstlendigi gorevler1 gerceklestirir.

AD—A Fle— A F O F
| YT YT ;

B I>— B Cout Cl B Cou

Cin (5 I E C i

________________________________________________________

Bir bitlik tam toplayic: lizerinden sinyal tamimlama 6rnegi {e)



3.1 Sinyaller (Signals)

= Sinyaller atanirken kod blogu i¢inde ‘<=’ sembolii kullanilir. Bu sembol C
dilindeki ‘=" ifadesine karsilik gelir.

= [Ik deger atamalar1 icin ise ‘:= ifadesi isletilir ve bu amacla asagidaki kod
satir1 kullanilir.

signal isim: #ir := ilkdeger; [lk deger
atamasi i¢in

Ornegin; signal vektor: std logic vector(7 downto 0) :="00001111";
signal dortlu: std logic vector(3 downto 0) :="1111";
signal seviye: bit :='0';

signal yil: integer := 1980;



3.1 Sinyaller (Signals)

(19 29

= Sinyallere ilk deger atamasi “:=" isareti ile saglanirken, normal deger

atamasi “<=" isareti ile saglanir. {lintili 6rnekler asagidaki gibidir;

v yil <=2011; Normal
atama i¢in

v seviye <="1";

v vektor(2) <="'0';
v vektor <="00001111";
v dortlu <="1111";

v dortlu <=b"1111";

v dortlu <= x"F";

v dortlu <= (others=>'1");



5.1 Sinyaller (Signals) | Library icce;
Use iece.std logic 1164.all,;

JUse ieee.std logic arith.all;
Use iece.std logic unsigned.all; < - sieveeanan..........

conv_std_logic_vector 4«
fonksiyonunu barindirir.

Entity sayici 4b is
Port (clk: in std logic;

Tasarim-1 rst: in std logic;
cikis: out std logic vector(3 downto O))
Ornek 5.1: 4-bitlik End sayici_4b;
ileri sayici1 tasarimi i¢in Architecture d < of savici 4b i
gerekli VHDL kodunu rchitecture davranis of sayici_4b is
signal sayma: integer := 0;
yazimiz. Besin std_logic_vector
5 tiriinde nesne igin
PrOFQSS (Clk’ rst) (sayma tiiri integer
Begin yerine
If (rst="1") then std_logic_vector
sayma <= 0; secilirse) dogrudan
Elsif rising_edge(clk) then aritmetik islem
— yapilabilmesini saglar.
sayma <= sayma +1;<"**{"
End if;

End process;
cikis <= conv_std logic vector(sayma, cikis'length);
End davranis;




3.1 Sinyaller (Signals)

Architecture davranis of sayici 4b is Tasarim-1

signal sayma: integer := 0;

Ornek 5.1: 4-bitlik
sayicl tasarimi  1¢in

gerekli VHDL kodunu
yaziniz.

Begin

Begin

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

Process (clk, rst)
If (rst ='1") then
Elsif rising edge(clk) then
End if;

End process;

cikis <= conv_std logic vector(sayma, cikis'length);
End davranis;

sayma <= 0;

sayma <= sayma +1;

l—D cikis[2:0]
w [
| sayma_reg[31:0]
CLR I
clk S —= ﬂ
3.0
Q <
D
\%‘ )
\
\\
\
RTL_REG_ASYNC AN
\
\

saymal_i

V=X"00000001"

10{31:0]
f’f} 0[31:0]

Kisitsiz Integer ile islem kaynakh
32 bitlik register iizerinden

1{21:0] |

"

RTLADD

¢ozimleme yapilmaya ¢alisilmis




. . Library ieee;
5 " 1 Slnyaller (Slgnals) Use ieee.std logic 1164.all,
{+Use iece.std logic arith.all;
.Use ieee.std logic unsigned.all,

conv_std_logic_vector 4

fonksiyonunu barindirir. : Entity sayici_4b is

_." Port (clk: in std logic;

] rst: in std_logic;

; cikis: out std logic vector(3 downto 0));
Tasarim-2 - | End sayici_4b;

. o ¢ | Architecture davranis of sayici 4b is
Ornek S.1: 4-bitlik sayicr ! signal sayma: integer range 0 fo 15 := 0;

tasarimi i¢in gerekli VHDL : | Begin
3 Process (clk, rst)

kodunu yazimniz. :
odunu ya :_ Begin
. If (rst="1") then
L4 _
sayma <= 0;
std_logic_vector Elsif rising_edge(clk) then
tiriinde nesne i¢in If sayma = 15 then
(sayma tiiri integer sayma <= 0;
yerine e Else
Std_logic_vector ------------ > Sayma <= Sayma —|—1;
secilirse) dogrudan End if;
aritmetik .is.lemv End if:
yapilabilmesini saglar. End process;

cikis <= conv_std logic vector(sayma, cikis'length);
End davranis;




3.1 Sinyaller (Signals)

Tasarim-2

Ornek 5.1: 4-bitlik
sayicl tasarimi i¢in
gerekli VHDL kodunu
yaziniz.

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

Architecture davranis of sayici_4b is
signal sayma: integer range 0 to 15 :=0;
Begin
Process (clk, rst)
Begin
If (rst="1") then
sayma <= 0;
Elsif rising_edge(clk) then
If sayma = 15 then
sayma <= 0;
Else
sayma <= sayma +1;
End if;
End if;
End process;
cikis <= conv_std logic vector(sayma, cikis'length);

End davranis;

Integer tanimlama sinirlandirildig:

ve sifirlama saglandigs icin ¢ok
daha kii¢iik register dizisi kullanilmis

1
]
rst > !
v
_ ] sayma_reg[3:0]
sayma_i CLR .
sayma0_i S=4'b1111 10[3:0 = C L
I 20 \ O[3:0] Q cikis[3:0]
0[3:0] S=default  11[3:0] D
10[3:0] +
e
L RTL_MUX
RTL_ADD S[3:0] RTL_REG_ASYNC




o . Library ieee;
5 . 1 Slnyaller (Slgnals) Use ieee.std_logic 1164.all;

Use ieee.numeric_std.all,

Entity sayici 4b is
Port (clk: in std logic;
rst: in std_logic;
cikis: out std_logic vector(3 downto 0));

Tasarim-3 End sayici_4b;
Architecture davranis of sayici 4b is
Ornek 5.1: 4-bitlik signal sayma: unsigned (3 downto 0):= (others =>'0");
— . Begin
sayicl . tasarimi  1¢In Process (clk, rst)
gerekli VHDL kodunu Begin
yaziniz. If (rst ='1") then

sayma <= (others =>'0");
Elsif rising_edge(clk) then
If sayma="1111" then
sayma <= (others =>'0");
Else
sayma <= sayma +1;
End if;
End if;
End process;
cikis <= std logic vector(sayma);
End davranis;




3.1 Sinyaller (Signals)

Tasarim-3

Ornek 5.1: 4-bitlik
sayicl tasarimi  i¢In
gerekli VHDL kodunu
yaziniz.

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

Architecture davranis of sayici 4b is
signal sayma: unsigned (3 downto 0):= (others =>'0");
Begin
Process (clk, rst)
Begin
If (rst ="1") then
sayma <= (others =>'0");
Elsif rising_edge(clk) then
If sasyma="1111" then
sayma <= (others =>'0");
Else
sayma <= sayma +1;
End if;
End if;
End process;
cikis <= std _logic_vector(sayma);
End davranis;

Tasarim-2 ile ayni
islem ve devre saglanir

rst D

sayma_reg[3:0]
sayma_i CLR

plusOp i S=4'b1111  10[3:0] = C
O[3:0] 5 Q

S=default [1[3:0]

11
:’ > 0[3:0]
10[3:0] *

RTL_ADD

e
S5[3:0] RTL_REG_ASYNC

cikis[3:0]



3.2 Degiskenler (Variables)

= Degisken; process ve alt programlar (fonksiyon ve prosediir) i¢inde
tamimlanan, degeri degistirilebilen ve en son degerini muhafaza eden
nesnelerdir.

= Herbir degisken belirtilen tiirde bir deger tutar ve sadece tanimlandigi
process veya alt program kapsaminda kullanilabilir.

= Asagidaki kod satiri, hem ilk deger atamalarinda hem de normal (program
icindeki) atamalarda kullanilir. Burada isletilen 1saret “:= olmalidr.

variable isim: fiir ;= ilkdeger; | Ik deger atamasi ve
Normal atama i¢in

Ornegin; variable degl: integer := 16;

variable deg?2: integer; @



3.2 Degiskenler (Variables)

= [lintili 6rnekler asagidaki gibidir;

v yil :=2011;

v seviye :='1";

[1k deger atamas1 ve
Normal atama i¢in

v vektor(2) :="'0";

v vektor :="00001111";

v dortlu :="1111";

v dortlu := x"F";

v dortlu :=b"1111";

v dortlu := (others=>'1");

= Veri tiirleri aynt ise degiskenden sinyale veya sinyalden degiskene atama

yapilabilmektedir.

©



3.2 Degiskenler (Variables)

= Degisken degeri ise yalnizca process ve alt programlar i¢inde
isletilebildiginden, process disina deger atamasinda degiskenin bir sinyale
aktarilmasi gerekir.

= Karmasik hesaplama ve algoritmalar i1¢in process i1¢inde degisken
kullanilmasi tavsiye edilir.

= Sinyaller 1le process i¢ine aktarilan degerin bir degiskene atanmasi, process
icindeki i1slemin degiskene gore sonlandirilmasi ve degiskene dair degerin
process ¢ikisinda tekrar sinyale aktarilmasi onertlir.

= Simiilasyon swrasinda degiskenler, genellikle sinyallere gore daha az
bellek tiiketir ve daha hizli islem yapar, ciinki sadece ilgili process icinde
gecici olarak tutulurlar.

= Ancak donanim sentezi acisindan, kalict veri saklama (depolama elemanti)
icin sinyal kullanimi gereklidir. @



3.2 Degiskenler (Variables)

= Bir degisken birden fazla process veya alt program ig¢inde isletilecekse
ortak degisken olarak tanimlanmalidir.

= Bu tanimlama architecture tanimlama satir1 ve begin komutlar1 arasina
yapilabilir.

= Asagidaki ornekte tek bir architecture yapist mevcuttur ve igindeki herbir
process’te sayac degiskeni ortak kullanilabilir.

Architecture cikis of sayma is

shared variable sayac: std logic vector(3 downto 0) :=*“00117;

Begin ...



3.2 Degiskenler (Variables)

Ornek 5.1: 4-bitlik ileri-geri sayici
tasarim1  gergeklestirilecektir.  Bir
anahtar kullanilacak olup, anahtar
degeri lojik-0 oldugunda geri, lojik-
1 oldugunda 1se ileri sayma
gerceklestirilecektir. Gerekli VHDL
kodunu yaziniz.

= variable nesneleri, onceden
belirtildigi gibi process, procedure
ve function iginde tanimlanmalidir.

sinyal tanimlamasi ise
mimari  (architecture) icinde
yapilmistir, ancak process,
procedure ve function icinde
tanimlanmalart miimkiin degildir.
Sinyal nesneleri bu ii¢ yapinin
icerisinde isletilebilirler.

= Yine

Library icee; Tasarim-1
Use ieee.std _logic 1164.all,

Use iece.numeric_std.all;

Entity ilerigerisay is
Port (clk, rst, anahtar: in std logic;

cikis: out std logic vector(3 downto 0));
End ilerigerisay;

Architecture davranis of ilerigerisay is
signal say: unsigned(3 downto 0) := (others =>"'0");
Begin
Process (clk, rst)
Begin
If (rst="1") then
say <= (others =>"'0");
Elsif rising_edge(clk) then
If (anahtar ='1") then
say <= say+1;
Else
say <= say-1;
End if;
End if;
End process;
cikis <= std_logic_vector(say);
End davranis;

©




3.2 Degiskenler
(Variables)

Library ieee;

Use ieee.std _logic _1164.all; Ta-sa-rlm' 1

Use iece.numeric_std.all;

Entity ilerigerisay is
Port (clk, rst, anahtar: in std_logic;

cikis: out std_logic_vector(3 downto 0));
End ilerigerisay;

Architecture davranis of ilerigerisay is
signal say: unsigned(3 downto 0) := (others =>"'0");
Begin
Process (clk, rst)
Begin
If (rst="1") then
say <= (others =>'0");
Elsif rising_edge(clk) then
If (anahtar = '1") then
say <=say+1;
Else
say <= say-1;
End if;
End if;
End process;
cikis <= std_logic_vector(say);
End davranis;

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

plusOp_i

RTL_ADD

minusOp_i

say_i

S=1b1  10[3:0] \
0[3:0]

— > cikisi30)

say_reg[3:0]

CLR
= C

Q

S=default  11[3:0]

RTL_SUB

anahtar D—‘

dk [ >

11
|0[30]|: 0130

RTL_MUX

D

p—
RTL_REG_ASYNC



3.2 Degiskenler (Variables)

Ornek 5.1: Ayn1 o6megin VHDL
kodunu say nesnesi variable oldugu
durum i¢in yazalim.

= Nesnelerin tanimlama yerlerine ve
nesnelere deger atama icin gerekli
komutlara dikkat edilmelidir.

: - Tasarim-2
Library ieee;

Use ieee.std_logic 1164.all,;
Use iece.numeric_std.all;

Entity ilerigerisay is
Port (clk, rst, anahtar: in std logic;

cikis: out std _logic vector(3 downto 0));
End ilerigerisay;

Architecture davranis of ilerigerisay is
Begin
Process (clk, rst)
variable say: unsigned(3 downto 0) := (others =>"'0");
Begin
If (rst="1") then
say := (others =>"'0");
cikis <= std_logic_vector(say);
Elsif rising_edge(clk) then
If (anahtar ='1") then

say :=say+l;
Else
say = say-1;
End if;
cikis <= std_logic_vector(say);
End if;

End process; (@)

End davranis;




3.2 Degiskenler
(Variables)

Library icee;
Use ieee.std_logic_1164.all;
Use ieee.numeric_std.all;

Tasarim-2

Entity ilerigerisay is
Port (clk, rst, anahtar: in std logic;

cikis: out std_logic_vector(3 downto 0));
End ilerigerisay;

Architecture davranis of ilerigerisay is
Begin
Process (clk, rst)
variable say: unsigned(3 downto 0) := (others =>'0");
Begin
If (rst="1") then
say := (others =>"'0");
cikis <= std_logic_vector(say);
Elsif rising_edge(clk) then
If (anahtar ="'1") then
say = say+l;
Else
say := say-1;
End if;
cikis <= std_logic_vector(say);
End if;
End process;
End davranis;

plusOp_i
O[3:0]

I
10(3:00 ( +

RTL_ADD

minusOp_i
0[3:0]

I
opE:0] (-

rst [ >
say_reg[3:0]
CLR |y
dk [ > C
5 Q
T
RTL_REG_ASYNC

RTL_SUB

Vivado /
Elaborated Design Ciktis1
(RTL Sematik Diyagrami)

anahtar [ >

s=1p1  10[3:0]

cikis_reg[3:0]

s=default  11[3:0]

< RTL.MUX

. CCLR
sa =
y_I Q
\ D
0[3:0]
L‘E
/r RTL_REG_ASYNC

[ cikis[3:0]



3.2 Degiskenler (Variables) Say signal olarak tamiml

Tasarim-1
ikis[3:0)
- D I—D cikis[3:0]
plusOp_i
1"
-ﬁm[m . \LoB
RTL_ADD . say_reg([3:0]
say! CLR ]
minusOp i S-1b1  10[3:0] \ C
1 0[3:0] Q
:C) 0[3:0] S=default  11[3:0] D
10[3:0] -
RTL_SUB s | RILMUX RTL REG ASYNC
anahtar D—‘ - S
dk [ >
olusOp_i Tasarim-2
I N
0[3:0]
10[3:0] | +
‘O RTL_ADD
Is °
sey reg(30] | minusop. Say variable olarak taniml
CLR |n :
dk [ > >C 10[3:0] ([ - o130
D RTL_SUB
e
RTL_REG_ASYNC cikis_reg[3:0]
_ CCLR I
say_i > L
Q cikis[3:0]
s=1b1  10[3:0] \ D D
0[3:0]
s=default  11[3:0]
RTL_REG_ASYNC
S/ﬁTL_MUX
anahtar [ >




3.2 Degiskenler (Variables)

= Tasarim-1 ve Tasarim-2 sirasiyla signal ve variable tanimlamalarina ornek
vermek amaciyla sunulmustur.

= Her iki tasarimda da gorilecegi lizere port bilgileri process icinde dogrudan
isletilebilir. (anahtar portunun durumuna gore islem saglanmasi, ¢tkis atamasi,
vb gibi)

Onemli Bilgi

=Process 1¢1 variable kullanarak ¢O0ziim onermek bazi durumlarda daha basit
devre yapisi saglayabilir.

= Ancak sentezlenebilirlik tizerine de sinyal kullanimi tavsiye edilir.




3.2 Degiskenler (Variables)

= Cikisa deger atamasi, 1lk Ornekte (Tasarnm-2’de) rst='1' ve clk sinyalinin
yiikselen kenarinda saglanir.

= Diger ornekte ise If blogu disina ve process icine yazimi saglanmistir. Process
icinde islem yapilmasi dogrudur (variable process disinda kullanilmaz, process
disina ¢ikarmak i¢in sinyale aktarmak gerekir).

Tasarim-2 Dikkatli kullanim gerekir
Architecture davranis of ilerigerisay is Architecture davranis of ilerigerisay is
Begin Begin
Process (clk, rst) Process (clk, rst)
variable say: unsigned(3 downto 0) := (others =>'0"); variable say: unsigned(3 downto 0) := (others =>'0");
Begin Begin
If (rst="1") then If (rst="1") then
say := (others =>"'0"); say := (others =>'0");
cikis <= std_logic_vector(say);\\ Elsif rising_edge(clk) then
Elsif rising_edge(clk) then ‘\\ If (anahtar ='1") then
If (anahtar ='1") then ‘\\ say :=say+l;
say = say+1; ‘\\ Else
Else \\ say = say-1;
say := say-1; RN End if;
End if; M End if;
cikis <= std_logic_vector(say); === -Z 2220 == cikis <= std_logic_vector(say);
Endif, _____emmm===mTTTT End process;
End proce‘s;; End davranis; @
End davranis;




3.2 Degiskenler (Variables)

= Ancak If blogu disina yazim oldugu i¢in sistemi gereksiz ylikleme altinda birakir.

= Process blogu duyarlik listesinde rst ve clk sinyalleri tanimli oldugundan bu blok
rst ve clk sinyallerinin her biri i¢cin 021 ve 120 degisimleri i¢in tetiklenir.

Tasarim-2 Dikkatli kullanim gerekir
Architecture davranis of ilerigerisay is Architecture davranis of ilerigerisay is
Begin Begin
Process (clk, rst) Process (clk, rst)
variable say: unsigned(3 downto 0) := (others =>'0"); variable say: unsigned(3 downto 0) := (others =>'0");
Begin Begin
If (rst="1") then If (rst="1") then
say := (others =>"'0"); say := (others =>'0");
cikis <= std_logic_vector(say);\\ Elsif rising_edge(clk) then
Elsif rising_edge(clk) then ‘\\ If (anahtar ='1") then
If (anahtar ='1") then ‘\\ say :=say+l;
say = say+1; ‘\\ Else
Else \\ say = say-1;
say := say-1; RN End if;
End if; M End if;
cikis <= std_logic_vector(say); === -Z 2220 == cikis <= std_logic_vector(say);
Endif, _____emmm===mTTTT End process;
End proce‘s;; End davranis; @
End davranis;




3.2 Degiskenler (Variables)

= Eger cikis atama komutu If blogu disina yazilirsa, ¢ikisa atama islemi clk
sinyalinin diisen kenarinda dahi saglanir.

Bu nedenle hangi kodun nereye vazildigi cok onemlidir.

Tasarim-2 Dikkatli kullanim gerekir
Architecture davranis of ilerigerisay is Architecture davranis of ilerigerisay is
Begin Begin
Process (clk, rst) Process (clk, rst)
variable say: unsigned(3 downto 0) := (others =>'0"); variable say: unsigned(3 downto 0) := (others =>"0");
Begin Begin
If (rst="1") then If (rst="1") then
say := (others =>"'0"); say := (others =>'0");
cikis <= std_logic_vector(say);\\ Elsif rising_edge(clk) then
Elsif rising_edge(clk) then ‘\\ If (anahtar ='1") then
If (anahtar ='1") then ‘\\ say :=say+l;
say = say+1; ‘\\ Else
Else \\ say = say-1;
say := say-1; RN End if;
End if; M End if;
cikis <= std_logic_vector(say); === -Z 2220 == cikis <= std_logic_vector(say);
Endif, _____emmm===mTTTT End process;
End proce‘s;; End davranis; @
End davranis;




3.3 Sabitler (Constants)

Sabit (Constant), sinyal ve degisken nesnelerinin aksine

degistirilemeyen nesnelerdir.

= Sabit nesneleri, programlarin okunabilirligini
tanimlamalar1 asagidaki kod satir1 ile gerceklestirilir.

constant isim: ziir:= ilkdeger;

Ornegin; constant katsayi: integer:= 4;

artirmaktadir.

degeri

Sabit



SONRAKI DERS KONUSU

!
6- VHDL VERI TURLERI




ILERI SEYISAL SISTEMLER

Ders sorumlusu:

Do¢. Dr. Hasan KOYUNCU



6. VHDL VERi TURLERI

= VHDL iizerinden tasarlanan devrelerde veriyi hafiza elemanlarinda
muhafaza ederek temsil eden tiirlerdir.

= Veri tiirleri; sinyal (signal), degisken (variable) ve sabit (constant) olarak
belirtilen nesnelerin alabilecegi degerleri tammmlamada kullanilirlar.

= VHDL, nesnelerin belirgin bir sekilde tanimlanmalarini zorunlu kilan bir
dildir ve ver1 tiir tanimlamalari biliylik bir 6nem arz eder.

= Vert1 tirleri, bildirimleri sonrasinda program icinde degistirilemez.

= Tur bildirimler1, type ve subtype komutlari ile gerceklestirilir. Type komutu
ile yeni bir tiir, subtype komutu ile de mevcut bir tiire dair alt tiir

tanimlanur. @



6.1 Skaler Turler

= Ele alinan nesnenin yalmizea bir veri degeri tutabildigi tiirlerdir.

= Siraly, fiziksel, kayan nokta ve integer tiirlerinden meydana gelir.

= Bu tiir kapsamindaki tanimlamalarda aralik veya siralama kullanilir,

Ornegin; type gri seviye is range 0 7o 255;

type gri_seviye is range 255 downto 0;

type sys_in is (gerilim, akim, sicaklik, nem);

= Deger aralig1 tanimlamasinda kii¢iikten bliylige “fo”, biiyiikten kiicilige ise

“downto’” komutlan 1sletilir.

©



6.1.1 Siral1 Tiir

= Nesnelere dair tirlerin sirah listeleme yontemi kullanilarak tanimlandig,
kullaniciya o6zel (kullanicinin tanimlamasi gereken) veya on tanmimh
(onceden sistemde alacagi kategoriler bilinen ve yeniden tanimlanmasi
gerekmeyen) veri tiiridiir.

= Bu tiir, kullaniciya 6zel inceleme kapsaminda 0zellikle durum makinesi
modellemek icin kullanilir ve durumlara dair okunabilirligin artirilmasini
saglar.

Tanimlama komutu: type nesne ismi is (kategoril, kategori2, kategori3,...);

Ornegin; type lojik_seviye is (L,H);

type durum is (basla, dur, iler1, geri);

= Tanimlama komutundaki kategori isimler1 harf, alt ¢izgi ve numaralardan

olusur.
©



6.1.1 Siral1 Tiir

= Kategori isminin ilk elemani harf ile baslatilmahdir.

= Degisken ve sinyallere atama yapilirken, atanacak deger ve degerin

atanacagi nesnenin ayni tiirde olmasi gereklidir.

Ornegin; type lojik_seviye is (L,H);

type durum is (basla, dur, ileri, geri);

type doluluk is (bos, ceyrek, yarim, yariceyrek, tam);
type lojik seviye is ('0', '1');
variable doluluk kontrol: doluluk;

signal seviye kontrol: lojik seviye;

doluluk kontrol := ceyrek;

seviye kontrol <="1";

____________

! I
- Strall tur atama ornegi |
I |

___________



6.1.1 Siral1 Tiir

Boolean Tiirii: On tammmh tiirlerden birisi olup, true veya false
degerlerinden birini alir.

On tanim komutu: type boolean is (true, false);

Bit Tiirii: ‘0’ ve ‘1’ degerlerini alabilen on tamiml tiirdiir.

= Integer (tam sayi) tiri ile karistirlmamasi i¢in tirnak isareti icinde
tanimlanir.

On tanim komutu: type bit is (0", '1");

Ornegin; signal deger: bit :='1"; // bildirim ve ilk deger atamasi

deger <="'0"; // kod blogu icinde deger atamasi



6.1.1 Siral1 Tiir

Character Tiirii: ISO-8859-1 karakter setindeki 256 farkli karakteri icertir.

Sirali Tiir Icin Onemli Bilgi: Sirali tiir icerisinde bir diger énemli konu ise
asir1 yiiklemedir.

= Bir kategori birden fazla sirali tiir igerisinde kullanildiginda asir1 yikleme
durumu s6z konusu olabilir.

= Herhangi bir anlam kargasasi olusmamasi i¢in program i¢inde kullanilan
sirali tlirin hangisi oldugu acik bir sekilde belirtilmelidir.

Ornegin; type girdiler is (gerilim, akim, ruzgar, nem, sicaklik);

type ayarlanacak is (gerilim, akim, katsayi);

deg <= girdiler'(akim);



6.1.2 Tamsay: Tiiru

= Alabilecegi degerler kullanici tarafindan belirlenen araliktaki tamsayilari
kapsayan skaler tirdir.

Tamimlama komutu: type isim is range alt limit 7o ust limit;

type isim is range ust limit downto alt limat;

Ornegin; type tam_sayi is range -1000 7o 3000;

subtype pozitifler is tam sayi range 1 to 3000;

Integer Tiirii: Standard paketinde bulunan on tamimh tamsayi tiirudiir.
Tanimli oldugu aralik 1se -2.147.483.647 ile 2.147.483.647 arasidir.

On tanim komutu: type integer is range -2147483647 to 2147483647;

Ornegin; signal sayma: integer;

sayma <= 657, @



6.1.3 Fiziksel Tir

= Uzunluk, agirlik, sicaklik gibi olgiilebilen fiziksel ozellikler nicelik olarak
bilinir.

= Fiziksel tiir, nesnelerin nicel tammmlamalarim birim baz iizerinden
yapabilmek icin kullanilan skaler tiirdiir.

= Nicel olarak sayisal oranlarla kendi i¢cinde doniistiiriilebilen ve olgiilebilen
birimleri ifade etmek ic¢in kullanilir.

= Fiziksel tiire dair en kii¢iik birim temel birim olarak adlandirilir.

= Tiliriin bildirimi sirasinda range komutu isletilir ve nesneye dair sinir
degerler (en yliksek ve en diisiik) tanimlanar.



6.1.3 Fiziksel Tir

Tamimlama komutu: type tur ismi is range alt limit 7o ust limit

units
temel birim_ismi;
ikincil _birim_ismi = deger temel birim ismi;

ucuncul birim ismi = deger ikincil birim ismi;
end units tur_ismi;
=Fiziksel tiirler yalnizca simiilasyonda kullanilir.

=Fiziksel tiirde tanimli1 bir nesne iizerinde aritmetiksel ve mantiksal islemler
yapilabilir, ancak bu tiirler sentezde kullanilamaz.



6.1.3 Fiziksel Tiir

Ornegin; type uz_deg is range 0 zo 1E9
units

mm,;
cm = 10 mm;

dm =10 cm;
m =10 dm;
km = 1000 m;

end units uz_deg;
variable sayil: uz deg;

variable sayi2: integer;

sayil :==2mm + 5 dm + 3 m;
sayi2 = 1250;



6.1.3 Fiziksel Tir

Time Tiru: Standard paketinde bulunan on tanimh fiziksel tiirdiir.

= Taniml oldugu aralik 1se -2.147.483.647 1le 2.147.483.647 aras1 olup, temel

birim femtosaniye (saniyenin 10-15’1)’dir.

On Tanim komutu: type time is range -2147483647 to 2147483647

units

fs;

ps = 1000 fs;
ns = 1000 ps;

us = 1000 ns;

ms = 1000 us;

sec = 1000 ms;
min = 60 sec;

hr =60 min;

end units;

Ornegin; constant periyot deg: time = 5ns;

--femtosecond
--picosecond
--nanosecond
--microsecond
--milisecond

-- second
--minute
--hour



6.1.4 Kayan Nokta Tiiru

= Ozel olarak belirli simirlarda tammlanan ve gercek sayilardan olusan
fiziksel turdiir.

= Matematiksel i1slemlerde (toplama, ¢ikarma, s alma, vb. gibi)
kullanilabilirler.

Tanimlama komutu:

type tur ismi is range ust_sinir downto alt_sinir;

type tur ismi is range alt sinir 7o ust sinir;

Ornegin; type akim degeri is range -3.7 f0 6.5;

type gerilim_degeri is range -360.87 70 520.35;



6.1.4 Kayan Nokta Tiiru

Real Tiirii: Standard paketinde bulunan 6n tanimh kayan nokta tiirii olup,
gercek sayilarin tanimlanacagi nesneler 1¢in kullanilir.

On tamim komutu: type real is range -1.7014111e+308 70 1.7014111e+308;

Ornegin; constant katsayi: real := 5.785;

6.2 Kompozit Tiir

= Bir deger yiginim gosteren veri tiirtidur.
= Bu tlirde taniml1 nesneler birden fazla unsura sahiptir.

= Array ve record olmak tizere iki kompozit tiir bulunur.



6.2.1 Array (Dizi) Tiirii

= Aynmi tirdeki bir veya daha fazla elemam gruplayip bir nesne olarak
tamimlayan veri tiridiir.

= Bir dizideki her elemanin, belli aralik i¢cinde bir indeks numarasi bulunur.

= Tek boyutlu dizilerde bir indeks numarasi bulunurken, ¢ok boyutlu dizide
dizi boyutu kadar sayida indeks numarasi kullanilir.

= Cok boyutlu diziler genelde sentezlenemez.

Tanimlama komutlari:

type tur_ismi is array (aralik) of dizi turu;=> (Kisitlamali Dizi)

type tur ismi is array (alt tur range <>) of dizi ruru; =2 (Kisitlamasiz Dizi)

©



6.2.1 Array (Dizi) Tiirii

23 x 4 Ram / Rom
i¢in tur tanimi

Ornegin; Yeni tiir ismi

4
/
Vi

-
-
-
-
-
-
-
-
-
-
-
-~
-

type ramituru is array (0 ro 7) of std _logic vector (3 downto 0);

= Diziler araliga bagli olarak kisith veya kisitsiz olabilmektedir.

= Deger aralig1 agik birakilan kisitsiz dizilerdeki eleman sayisi da belirsiz
olacaktir.

= Kisitlamasiz olarak bildirilen bir diziye dair boyutun, kod blogu i¢inde
mutlaka bildirilmesi gerekir.

= Bu tiirdeki sinyal ve degiskenler ancak bu sekilde program kapsaminda

kullanilabilir.
©



6.2.1 Array (Dizi) Tiirii

Ornek 6.1: 4’er bitten olusan ve kisitlanmamis bir bellek tanimlamasi icin
gerekli VHDL kodunu yaziniz.

type bellek is array (natural range < >) of bit vector (0 to 3);

= Siirsiz olusturulan bellek kapasitesi agagidaki kod blogu ile belirlenebilir.

signal ram_bellegi: bellek (0 to 5); ol 112713

—_1O




6.2.1 Array (Dizi) Tiirii

= Array tipinde tamimli dizi elemanlarinin her birisine bagimsiz olarak deger
atanabilmektedir.

= Dizilerde sinyal-degisken arasi atama yapilirken, bunlarin tir ve
genisliklerinin ayni olmasi gereklidir.

Ornegin; Tam say1 tiiriinde 10 elemanli dizi icin gerekli tiir tanimlamast:

type int vekt is array (1 7o 10) of integer;

Ornegin; Bit tiiriinde 5 elemanl dizi icin gerekli tiir tanimlamast:

type bit_dizisi is array (0 7o 4) of bit;



6.2.1 Array (Dizi) Tiirii

Ornegin; Kisitlamasiz bir bit vektor dizisinin tanimlanmasi ve kod icinde bu
tiirde 8 bitlik bir nesne tanimlamasi:

type bit_vektoru is array (natural range <>) of bit;

signal nesnel: bit vektoru (7 downto 0);

= Burada kod blogu i¢inde kisitlamasiz tanimlanan bit_vektoru isimli dizinin
boyutu, program ic¢inde 8 ile sinirlandirilarak kullaniliyor.

©



6.2.1 Array (Dizi) Tiirii

Ornek 6.2: 3x6 boyutlu, integer degerleri tutacak olan bir matrisde 1x5
konumuna 91 degerini atayiniz.

signal matris_ilk: matris tip;

matris_1lk(1)(5) <=91;

type tams_vek is array (0 7o 5) of integer;

type matris_tip is array (0 7o 2) of tams vek;

O(1]121]31]4]5
0
1 91
2

Ornek 6.2’ de bir diger

kod tanimlamasi:

type matris_tip is array (0 7o 2, 0 to 5) of integer;

signal matris_ilk: matris_tip;

matris ilk(1)(5) <= 91: ©




6.2.1 Array (Dizi) Tiirii

Bit_vector Tiirii: On tamiml array tiirii olup, elemanlarmin her biri ‘0’ ve ‘1’
lerden olusur.

= Bildirim asamasinda dizinin genisligi belirtilir. Bit vector tiirinde taniml
nesneler i¢in vektor degerleri atanacak ise ¢ift tirnak, tekil bir bit degeri
atanacaksa tek tirnak kullanilir,

On Tanim Komutu: type bit vector is array (natural range <>) of bit;

Ornegin; signal vektorl: bit vector(3 downto 0);

signal vektor2: bit vector(7 downto 0);
signal tekil deg: bit;

vektorl <="1011";
vektorl(3) <='0";

tekil deg <='0";
vektor2 <="10101111";

vektor2 <= x"AF"; @



6.2.1 Array (Dizi) Tiirii

String Tiirii: On tammbh array tiirii olup, karakterlerden olusan dizilerdir.

= Bildirim asamasinda dizinin boyutu ve siralamasi belirtilir.
= Bu tlirdeki degerler cift tirnak icinde tanimlanir.

= Sentezlenemeyen bir tiirdiir ve simiilasyon i¢cinde mesaj yayinlamak i¢in
kullanilir.

On Tanim Komutu: type string is array (positive range <>) of character;

Ornegin; constant eleman: string := "FPGA";
constant dil: string(1 to 4) .= "VHDL";
signal mesaj2: string(1 to 8);

mesaj2 <= eleman & dil; @



6.2.2 Record Tiiru

= Kapsamindaki elemanlarin farkh tiirdeki nesneleri icerdigi kompozit
tiirdur.

=Tanimlama komutlari: type record ismi is record
cleman_1smi: tur;

eleman_ismi: fur;

end record;

Ornegin;

type not kaydi is record
ogr not: integer;
ogr isim: string (1 to 40);

end record;



6.3 Synopsis Veri Tiirleri

= [EEE kiitiiphanesinde tanimlanmis olan veri tirleridir.

= En sik kullanilanlar1 Std Logic 1164 ve Std Logic Arith paketlerinde
taniml1 tlrlerdir.

6.3.1 Std_Logic_1164 Paketinde Taniml1 Tiirler

= Bu kapsamda yer alan tlrlere dair bildirimler, program baslangicinda
asagidaki tanimlama yapildiktan sonra saglanir:

Library iece;
Use iece.std logic 1164.all;



6.3.1 Std_Logic_1164 Paketinde Taniml Tiirler

Std_logic: VHDL dilinde en sik kullanilan veri tiiriidiir. Bu tiir kapsaminda
9 farkli durum deger olarak atanabilmektedir. Bu tiirler:

= 1 - Mantiksal — 1

= ) = Mantiksal — 0

=H 2> Zayif — 1

=L 2> Zayif— 0

= X = Bilinmeyen

= U - Tanimlanmamig

= - > Onemsiz

= W = Zayif bilinmeyen

= Z = Yiiksek Empedans seklindedir.

=Eger bu kapsamda tanimlanan bir veri 1¢in baslangic degeri atanmamissa,
varsayilan deger “U — Tanimlanmamis”™ seklinde atanr.

= Std_logic tiirtindeki nesnelere atamalar tek tirnak iginde yapilir. @



6.3.1 Std_Logic_1164 Paketinde Taniml Tiirler

Ornegin;

signal ekgl: std logic; // 1k atama yapilmamis, varsayilan deger 'U' olarak
bilinir.

signal ekg2: std logic :="1"; // 1lk atama yapilmis ve deger mantiksal-1 (yani
lojik-1).

signal ekg3: std logic :="'-"; // 1lk atama yapilmis ve deger dnemsiz.

Std_logic_vector: Elemanlarmin her birisi std logic tiriinde olan dizi
tiirtidiir. Bagli bulunan nesne degerleri cift tirnak i¢inde 1fade edilir.

(")rnegin;

signal parcacik: std logic vector (3 downto 0);
signal duruml: std logic vector (2 to 5) :="1010";

signal durum?: s¢zd logic vector (7 downto 0) := x"FF";



6.3.2 Std_Logic_Arith Paketinde Taniml Tiirler

= Bu kapsamda yer alan tiirlere dair bildirimler, program baslangicinda
asagidaki tanmimlama yapildiktan sonra saglanir:

Library icee;

Use ieee.std_logic arith.all;

Unsigned: Isaretsiz sayilari temsil etmek icin tanimlanir.

= En kiiclk deger1 “0” olup, negatif sayilari icermez.
= Bu tiirde tanimlanacak nesne bildirimlerinde deger arahigi bildirilmelidir.

= Nesneye atama yapilirken nesne ici bir elemana atamada tek tirnak,
birden ¢ok eleman atamasinda ise ¢ift tirnak kullanilir.



6.3.2 Std_Logic_Arith Paketinde Taniml Tiirler

Ornegin;

signal in_deg: unsigned (0 downto 0);

in_deg <="'0";

in_deg(0) <="I";

Ornegin;

variable degisken: unsigned (0 to 7) :="11111111";

degisken(1 to 3) :="000";
degisken(2) :="1";



6.3.2 Std_Logic_Arith Paketinde Taniml Tiirler

Signed: Isaretli say1 degerlerini temsil etmek icin tanimlanr.

= En sol kisimda yer alan bit isaret biti olarak nitelenir, ‘0’ olmasi halinde
say1 pozitif ve ‘1’ olmasi halinde say1 negatiftir.

= Negatif olan sayilar ikiye tiimleme mantigi ile yazilmalidir.

= Yine atamalarda deger araligi belirtilmeli, ¢oklu eleman atamalarinda ¢ift
tirnak ve tekli eleman atamalarinda tek tirnak kullanilmalidir.

= “n” bitlik signed tiiriinde bir nesne icin alabilecegi degerler, —(2™!) ile
(27-1-1) arasi sayisal deger olacaktur.

signed ("0011") // (+3)
signed ("1101") // (-3) @



6.3.2 Std_Logic_Arith Paketinde Taniml1 Tiirler

(")rnegin;

variable deg in: signed (1 fo 5);

deg in:="11100";
deg in(4) :="1";
deg in(1 70 2) :="00";

6.4 Alt Tiirler

= VHDL dilinde mevcut olan bir tiiriin belirli bir kisitla sunulan hali, alt
tiir olarak tanimlanair.

= Alt tiir, mevcut bir tiirtin alt kiimesidir.

©



6.4 Alt Tiirler

= Standard paketleri kapsaminda en sik kullanilan iki on tanimli alt tiir,
Natural ve Positive tiirleridir.

Tanimlama komutu: subtype alttur ismi is temel tur range aralik kisiti;

Ornegin; type tam_sayi is range -20 fo 20;

subtype poz tam sayi is tam sayi range 1 7o 20;

Natural: Kapsaminda “0” ve pozitif sayillarin yer aldig1 tiir olup, integer
tiirlinlin alt tlridiir.

On Tanim Komutu: subtype natural is integer range 0 fo integer'high;

Ornegin; signal deger: natural;

c.l.e.ger <=0;

deger <= 5850; @



6.4 Alt Tiirler

Positive: Kapsaminda pozitif sayillarin yer aldig tiir olup, integer tiriiniin
alt tiirtidur.

On Tanim Komutu: subtype positive is infeger range 1 to integer’high;

Ornegin; signal deger: positive;

(i.f:.ger <=1;
deger <= 9523;

6.5 Dizi Islemleri

= VHDL nesneleri, kendilerine deger atamasi yapilarak veya birbirleri ile
1sleme tabi tutularak kullanilir.

= Dizilerde de karsilastirma, atama, ekleme gibi islemler gergeklestirilir.

©



6.5 Dizi Islemleri

= Birden fazla elemana sahip dizilerde bu islemlerin saglanabilmesi i¢in 4
farkli yardimci islem bulunur:

1-Birlestirme
2-Kiimeleme
3-Dilimleme
4-Takma ad

Birlestirme (&): Aymi tirdeki iki dizinin ‘&’ (ampersand) isareti
kullanilarak birlestirilmesi saglanir.

= Bu operator (&), sinyal atama operatoriiniin (<=) yalnizca sag tarafinda
1sletilir.

= Bu operatorle dizilere tek bir eleman eklenebilecegi gibi, aym tiirde farkl
iki eleman da birbirine baglanabilir. @



6.5 Dizi Islemleri

Ornek 6.3: Dizi birlestirme drnekleri

elde 1 <=B & C;
elde 2 <=A & D; A B C D
elde 3 <=A & B; 01 | 111 | 1011 | 1111
elde 4<=A& B & C;
.“2 ;':
elde 1 elde 2 elde 3 elde 4
1111011 011111 01111 011111011

@



6.5 Dizi Islemleri

Ornek 6.4: Oteleyici register tasarimi icin gerekli architecture kodunu

birlestirme operatorii kullanarak saglayiniz.

giris_s—i—D Q D Q D Q D QF—

ks ) > > >

__________________________________________________________________________________________

Architecture davranis of oteleyici_reg is
signal Q: std logic vector(3 downto 0) :="0000";
Begin
Process (clk s)
Begin
If (clk s'event) and clk s ="l' then
Q <= Q(2 downto 0) & giris_s;
End if;
End process;
End davranis;




6.5 Dizi Islemleri

Kiimeleme: Record ve array tiirtindeki nesnelere deger atanirken kullanilir.

= Kiimeleme yonteminde dizideki herbir elemana teker teker deger atamak
yerine, biitiin elemanlara ayni anda farkh degerler atanabilir.

= Nesnelere atama yapilirken kiimeleme kullanilirsa, parantez iginde her
bildirim arasi virgil kullanihir.

= Kiimeleme i1sleminde dizi elemanlart indeks numarasina gore
adreslenebilmektedir.

= Adreslenmeyen elemanlar icin “others” terimi iizerinden adresleme
yapilabilir ve bu terim bildirilirken parantez ici sonda yer alir.



6.5 Dizi Islemleri

Dizi Tiirii Icin Ornekler:

variable vektorl: std logic vector (3 downto 0) :=('1','0",'1",'1");

= vektorl nesnesine dair ilk deger atamasi 1011 seklinde olur.

variable vektor2: std logic vector (3 downto 0) :=('1', 'l',others=>'0");

= vektor2 nesnesine dair 1lk deger atamasi 1100 seklinde olur.

variable vektor3: bit vector (3 downto 0) .= (0=>'1", 1=>"1", 2=>'0", 3=>'0");

= vektor3 nesnesine dair ilk deger atamasi 0011 seklinde olur.

signal veri: bit vector (7 downto 0);

verl <= (7 downto 4 =>"'0", 3 downto 0 =>"1");

= veri nesnesine deger atamasi 00001111 seklinde olur.



6.5 Dizi Islemleri

Record Tiirii Icin Ornek;
type bilgi is record
sayl_deg: integer;
eleman bil: string (1 fo 4);
end record;
variable yaz: bilgi := (sayi_deg=>5, eleman bil=> "ASIC");

yaz := (10, "FPGA");

Dilimleme: Bir diziyi parcalara ayirmak amaciyla kullanilir. Ayrilan herbir
parc¢a dizi dilimi olarak nitelenir.

= Herbir dizi diliminin adi, icindeki elemanlara dair veri tiirii ve yonii
ciktig1 (ana) dizidekiyle aymidir.

= Ornegin ana dizideki veri yonii downto ile belirli ise dilimlerde de aym

durum olmahdur. @



6.5 Dizi Islemleri

(")rnegin; signal bilgi: std logic vector (0 to 15);

bilgi(0 7o 3) -- 1lk dilim: bilgi (ana) dizisinin ilk 4 elemanini 1gerir
bilgi(4 o 7) -- 2. dilim: bilgi dizisindeki ikinci 4’liiyil 1¢erir
bilgi(8 7o 8) -- 3. dilim: bilgi dizisinde 9. elemani i¢erir

bilgi(9 7o 15) -- 4. dilim: bilgi dizisindeki son 7 elemani igerir

Takma Ad: Varolan bir nesnedeki bilgiler1, herbiri farkl isimle belirtilmis
farkli gruplara ayrrmak icin isletilir.

= Biiytiik verilerin pargalanarak daha kolay 1slenmesini saglar.

Tanimlama komutu:

alias takma 1sim: fakma isim_veri turu is nesne ismi;



6.5 Dizi Islemleri

Ornegin kod blogu;

signal bilgi: std logic vector(7 downto 0);

alias alt bilgil: std logic vector(2 downto 0) is bilgi(7 downto 5);

alias alt bilgi2: std logic is bilgi(4);

alias alt bilgi3: std logic vector(3 downto 0) is bilgi(3 downto 0);

N\

\
\
\‘

\
S

N
N\

A

)

\
\
\

N
\

N,
N
N

alias takma_isim: takma isim_veri turu is nesne 1

"

smi;

bilgi
alt bilgil alt bilgi2 alt bilgi3
7.Bit | 6.Bit | 5.Bit 4 Bit 3.Bit | 2.Bit | 1.Bit | 0.Bit




6.6 Nitelik (Attribute)

= Attribute, sinyal veya degisken nesnelere dair dzellikleri dondiirmek icin
kullanilir.

= On tanimli olan nitelik tiirleri, VHDL standard: olarak biitiin sentezleme
araclar tarafindan desteklenir.

= Left: Vektor olarak ifade edilen nesnenin solundaki indisi gosterir.
= Right: Vektor olarak ifade edilen nesnenin sagindaki indisi gosterir.
= High: Vektor olarak ifade edilen nesnenin en biiyiik indisi gosterir.
= Low: Vektor olarak ifade edilen nesnenin en kiic¢iik indisi gostertir.

= Length: Vektor olarak ifade edilen nesnenin uzunlugunu gosterir.

= Range: Vektor olarak i1fade edilen nesnenin indis araligini gosterir. @



6.6 Nitelik (Attribute)

Ornegin; signal vektor: std logic vector (2 to 8);

Nitelik ifadesi Elde Edilecek Deger
vektor'left 2
vektor'right 8
vektor'high 8
vektor'low 2
vektor'length ”/
vektor'range 2 to 8




6.6 Nitelik

(Attribute) girs s 4— DR e R

Library ieee;
Use iece.std _logic 1164.all,

Entity dizi_yakala is

Port (clk s, giris_s: in std logic;
1zin: out std logic);

End dizi_yakala;

Architecture davranis of dizi_yakala is
signal Q: std logic vector (3 downto 0) :="0000";
Begin
Process (clk s)
Begin
If rising edge(clk s) then
Q <= Q(2 downto 0) & giris_s;
End if;
End process;
1zin <= Q(3) and Q(2) and Q(1) and (not Q(0));

End davranis;

Ornek 6.5: Oteleyici
register lizerinden 1110
dizisini yakalayan
devrenin tasarimi i¢in
gerekli VHDL kodunu
yaziniz.




6.6 Nitelik
(Attribute)

Ornek 6.5: Oteleyici register iizerinden 1110 dizisini yakalayan

devrenin tasarimi i¢in gerekli VHDL kodunu yaziniz.

Library ieee;
Use ieee.std_logic 1164.all;

Entity dizi_yakala is

Port (clk s, giris_s: in std_logic;
izin: out std_logic);

End dizi_yakala;

Architecture davranis of dizi_yakala is
signal Q: std logic_vector (3 downto Q) :="0000";
Begin
Process (clk_s)
Begin
If rising_edge(clk_s) then
Q <= Q2 downto 0) & giris_s;
End if;
End process;
izin <= Q(3) and Q(2) and Q(1) and (not Q(0));
End davranis;

RN Vivado /
~ Elaborated Design Ciktis1

clk s D—l—
C

giris_s

Q_reg[3:0]

) (RTL Sematik Diyagrami)

izin1i
izin0 i

D 11

T
RTL_REG

M\ o 10
—

RTL_AND

RTL_AND

RTL_AND o _izin
O
I — >
b s

izin

()



SONRAKI DERS KONUSU

!
7- VHDL OPERATORLERI




ILERI SEYISAL SISTEMLER

7- VHDL OPERATORLERI

Ders sorumlusu:

Do¢. Dr. Hasan KOYUNCU



7. VHDL OPERATORLERI

= VHDL ifadeleri arasinda kullanimi1 gerekli olan aritmetik, karsilastirma ve
mantiksal islemlerin saglanabilmesi i¢in operatorler kullanilir.

= Genel olarak 6 baslik altinda incelenirler.

Aritmetik:
+ - &

*/ MOD REM -
Ozel:
Kaydirma: % ABS NOT
SLL. SRL
SLASRA Operatorler
Mantiksal:
AND OR NAND
. g NOR XOR XNOR
Dondiirme:
ROL ROR Karsulastirma:
— /: <
<= > >=



7. VHDL OPERATORLERI

= VHDL operatorlerinin kullanim onceligi tabloda yukaridan asagiya dogru en
onemliden baslayarak sunulmustur.

= Aym1 sinifta yer alan operatorler aym oncelige sahiptirler ve kod icinde
soldan saga dogru oncelikte islem yapilir.

= Yine kod i¢inde parantez kullanilarak oncelik saglanabilir.

VHDL operatorlerinin ozellikleri

Operator Tiirii Operatir ismi / Sembolii Oncelik
Sirasi
Ozel Operatorler **  NOT, ABS
. . Ulama / Toplama / Cikarma &, +, -
Aritmetik »
Carpma / Bolme * /, MOD, REM
Kaydirma SLL, SRL, SLA, SRA
Dondiirme ROL, ROR
Karsilagtirma = /= <, <=, > >=

Mantik AND, OR, NAND, NOR, XOR, XNOR




1.1 Aritmetik Operatorler

= Matematikte kullanilan biitiin aritmetik operator sembolleri ve bu islemlerin
oncelik siras1t VHDL dilinde de aym sekilde kullanilir,

= Aritmetik  islemler yalmizca aym tirdeki elemanlar arasi
gergeklestirilebilir.

= Bu operatorler bit vector disinda biitiin vektor ve say1 tiirleri icin
kullanilabilirler.

Isaret Islem Ornek
+ Toplama 4+2=6
- Cikarma 8-3=5
Aritmetik operatérlere dair * Carpma 3*4=12
isaret ve islem iliskisi / Bélme 7/2=3
SMOD2=1
MOD Kalan & MOD 5 = 3
SREM 2 =1

REM Kalan (-5) REM 3 = -2 @




1.1 Aritmetik Operatorler

= Dizilerde aritmetik 1islem yapilirken isleme girecek dizilere dair
boyutlarin esit olmas1 gereklidir. Boylece dizilerin biitiin elemanlari
karsilikli olarak isleme girer.

= MOD operatoriinde sonucun isareti “bolen” sayinin isaretiyle ayni olacaktir.
REM isleminde ise sonug 1sareti “boliinenin’ 1sareti ile ayni olur.

= REM ve MOD operatorleri, bir tamsaymin baska bir tamsayiya
boliimiinden kalam tespit etmek i¢in kullanilir.

REM ve MOD boélme 6rnekleri

REM MOD
islem Aciklama islem Aciklama
S5rem3=2 1*3 4+ 2 S5mod3=2 1*3 + 2
(-5)rem 3 = -2 (-1)*3 + (-2) (-5)mod 3 =1 (-2)*3 + 1
(-5) rem (-3) = -2 1%#(-3) + (-2) (-5) mod (-3) = -2 1%(-3) + (-2)

5 rem (-3) = 2 1)*(-3) + 2 5 mod (-3) = -1 (-2)*(:3) + (-1)




1.1 Aritmetik Operatorler

Ornek 7.1: Bir dijital saat tasarimi icin gerekli VHDL kod blogunun

architecture boliimiinii yazimiz.

Architecture davranis of dijital saat is
signal saat, dakika, saniye: integer := 0;
signal sayac: integer := 0;

Begin
Process (clk)

Begin
If rising_edge(clk) then
If sayac = (3600%24 - 1) then
sayac <= 0;
Else
sayac <= sayac+l;
End if;
End if;
End process;
saat <= sayac / 3600;
dakika <= (sayac mod 3600) / 60;
saniye <= (sayac mod 60);
End davranis;




1.1 Aritmetik Operatorler

Ornek 7.2: Giris portlarindan gelen 2 adet 6-bitlik sayilar {izerine toplama,
cikarma, carpma ve bolme islemlerinin yapildigi tasarimin VHDL kodunu

yaziniz.

= jeee.std logic_arith.all paketi + conv_std_logic_vector() + conv_integer()

Library ieee;
Use iece.std logic 1164.all,;
Use iece.std logic arith.all,

Entity uygulama is

Port (clk : in std logic;
st : in std logic;
sayll : in std logic vector (5 downto 0);
sayl2 : in std logic vector (5 downto 0);
top : out std_logic vector (7 downto 0);
fark: out std logic vector (7 downto 0);
carp: out std_logic vector (11 downto 0);
bol: out std logic vector (7 downto 0));

End uygulama; ‘




1.1 Aritmetik Operatorler

¥

Architecture davranis of uygulama is
Begin
Process (clk, rst)
variable sl, s2: integer;
Begin
If (rst="1") then
top <= (others=>'0");
fark <= (others=>'0");
carp <= (others=>'0");
bol <= (others=>'0");
Elsif rising_edge(clk) then
sl ;= conv_integer(signed(sayil));
s2 = conv_integer(signed(sayi2));
top <= conv_std logic vector((s1+s2), top'length);
fark <= conv_std logic_vector((s1-s2), fark'length);
carp <= conv_std logic vector((s1*s2), carp'length);
bol <=conv_std logic_vector((s1/s2), bol'length);
End if;
End process;
End davranis;




1.1 Aritmetik Operatorler

Ornek 7.2: Giris portlarindan gelen 2 adet 6-bitlik sayilar {izerine toplama,

cikarma, carpma ve boOlme islemlerinin yapildigi tasarimin VHDL kodunu
yaziniz.

Vivado /
Elaborated Design Ciktis1
(RTL Sematik Diyagramai)

sayi2(s:0] >——4p bol3.i 0
060 /" \_OBE00] bol2_i_0 s BN
\_/ seipt 0[60] _LL(/X o[l bol i bol_reg[7:0]
RTL_MINUS S=default _11[30:0] 2= L Q bol1_i__0 I s=1w1__10[7:0] \_ CCLR
: RTL_DIV g = : O[70] Q
bold_i__0 T RTL_MUX = o7/~ O\ o) et (7] ey D
10[6:0] bol3_i_1 s
nieo) | >= 1016:20] RTL_MINUS 5| RTLMUX RTL_REG_ASYNC
neo [ < = _REG_,
RTL_GEQ bol2_i__1
= RTLLT fark_reg[7:0]
sayi1is:0] O bolz.i bol3_i__2 =
bel3_i s-1v1 10[640] 10[620] i ¢]
RTL_EQ ) D
060 /" \_OBE0%] Sedetmit 11[300] 6] | < s farko_i
\_/ Ol60] |
RTLLT y ,
RTL_MINUS gt RTLMUK 1 < 1[7:0) _ RTL_REG_ASYNC
bol4_i RTL Sus top_reg(7:0]
top0_i CCLR
10[7:0]
L9~ o) Q
11070 [ \:—/ D
L RTL_ADD
ak O RTL_REG_ASYNC
st [» carp_reg[11:0]
carpO_i CCLR
iy o[11:] a
6] | D
RTL_MULT

RTL_REG_ASYNC

bol[7:0]
fark[7:0]
top[7:0]

carp[11:0]

©



1.1 Aritmetik Operatorler

Ornek 7.2: Aynmi ¢oziim (RTL semas: da ayni kalacak sekilde) asagidaki
VHDL kodu ile de saglanar.

= jeee.numeric_std.all + std_logic_vector() + to_integer() + to_signed()

Library ieee;
Use iece.std logic 1164.all;
Use icee.numeric std.all;

Entity uygulama is

Port (clk, rst : in std logic;
sayil, sayi2 : in std logic vector (5 downto 0);
top, fark, bol : out std logic vector (7 downto 0);
carp: out std _logic vector (11 downto 0));

End uygulama;
. €




1.1 Aritmetik Operatorler

Ornek 7.2: Aym ¢oziim (RTL semasi da aymi kalacak sekilde) asagidaki

VHDL kodu ile de saglanabilir.

Architecture davranis of uygulama is
Begin
Process (clk, rst)
variable sl, s2: integer;
Begin
If (rst="1") then
top <= (others=>'0");
fark <= (others=>'0");
carp <= (others=>'0");
bol <= (others=>'0");
Elsif rising_edge(clk) then
sl :=to_integer(signed(sayil));
s2 = to_integer(signed(sayi2));
top <=std_logic vector(to_signed((s1+s2), top'length));
fark <= std logic vector(to signed((s1-s2), fark'length));
carp <=std_logic_vector(to_signed((s1*s2), carp'length));
bol <= std logic_vector(to signed((s1/s2), bol'length));
End if;
End process;
End davranis;

4




1.2 Oncelikli (Ozel) Operatorler

= Oncelikli (6zel) operatorler, en yiiksek ©Oncelige sahip operatdr tipidir.
Bunlar; iis alma (**), mutlak deger (abs) ve degili / tersi (not) seklinde

bilinir.

Oncelikli operatérlere dair isaret ve islem iliskisi

Isaret Islem Ornek
*x Us Alma 52122 5
ABS Mutlak Deger 1%88((_53)):53
NOT Degili / Tersi Eg: (1) z (1)

Degili / Tersi Icin Tanimlama Ornekleri;

= not a; // a’ nin tersi,
= not a and b; // a’ nin tersi ve b,
= not (a and b); // (a ve b)’ nin tersi



1.2 Oncelikli (Ozel) Operatorler

Ornek 7.2: Bir deger girisinin ‘3’ iissiinii alan tasarim icin gerekli VHDL kod

blogunun entity ve architecture boliimlerini yaziniz.

Entity us_alma is

Port (giris: in integer;
cikis: out integer);

End us_alma;

Architecture davranis of us_alma is
Begin

cikis <= giris**3;
End davranis;




1.2 Oncelikli (Ozel) Operatorler

= Ulama operatorii ise ‘&’ (ampersand) isareti ile gosterilir. Bu operator

vektorler1 genisletmek veya birbirine ulamak i¢in isletilir.

Ornek 7.4: 4-bitlik iki adet giris sinyalini, 8-bitlik ve 4-bitlik (ikinci vektdriin
son terimi ve ilk vektoriin ilk 3 terimi olacak sekilde) iki ayr1 cikista

birlestirmek i¢in gerekli VHDL kodunu yaziniz.

Library ieee;
Use icee.std logic 1164.all;

Entity ulama uyg is

Port (clk, rst : in std logic;
vektorl, vektor2: in std logic vector (3 downto 0);
cikis 8bit : out std logic vector (7 downto 0);
cikis 4bit: out std logic vector (3 downto 0));

End ulama uyg; ‘




1.2 Oncelikli (Ozel) Operatorler

rst >

clk D

vektor2[3:0] I >

‘ 2:0
vektor1[3:0] D—

4

Architecture davranis of ulama uyg is
Begin
Process (clk, rst)
Begin
If (rst='1") then
cikis 8bit <= (others=>'0");
cikis 4bit <= (others=>'0");
Elsif rising_edge(clk) then
cikis 8bit <= vektor2 & vektorl;

\ 3O\ -

cikis_4bit_reg[3:0]
CLR 1
> C
Q : > cikis_4bit[3:0]
D
e
RTL_REG_ASYNC
cikis_8bit_reg[7:0]
CLR 1
> C
Q : ) cikis_8bit[7:0]
D
|
RTL_REG_ASYNC
Vivado /

Elaborated Design Ciktis1
(RTL Sematik Diyagrami)

cikis_4bit <= vektor2(3) & vektorl(2 downio 0);

End if;
End process;
End davranis;



1.3 Mantiksal Operatorler

= En diisiik oncelige sahip olan operator grubudur.

= Mantik operatorleri; bit, bit_vector, boolean, std logic ve std logic vector
tirlerindeki veriler tarafindan sik kullanilan operatorlerdir.

= Boolean tiirtinde true ifadesi lojik-1" e karsilik gelirken, false ifadesi lojik-
0’ a denk diiser.

= Oziinde NOT operatérii de mantiksal bir operatdrdiir, ancak dnceligi farkli
oldugundan Oncelikli (Ozel) Operatérler kategorisinde belirtilir.

= Mantiksal operatorlerden yalnizca NOT operatorii tek parametrelidir.

©



1.3 Mantiksal Operatorler

= Std logic, Bit veya Boolean tiriinde tammmli a ve b sinyalleri ilizerine
mantiksal bir operatoriin isletilmesi gerekiyorsa;

Tamimlama komutu: a mantiksal operator b seklinde olmalidir.

=Mantiksal operatorde islenecek nesnelerin aymi tiir ve boyutta olmasi

gereklidir.
iki parametreli mantiksal operatdrlerin dogruluk tablosu
Girisler Cikislar
a b N NAND OR NOR 0 XNOR
0 0 0 1 0 1 0 1
0 1 0 1 1 0 1 0
1 0 0 1 1 0 1 0
1 1 1 0 1 0 0 1




1.3 Mantiksal Operatorler

= Baz1 sentezleyicilerde nand ve nor kapilarina dair komutlar tanimli degildir.

=Farkli sentezleyiciler arasi (Quartus, Vivado, Lattice, ...) kod aktarimi
yapilacaksa, sikint1 olmamasi adina;

= a nand b = not (a and b) veya

= a nor b = not (a or b) seklinde yazim da tercih edilebilir.

iki parametreli mantiksal operatdrlerin dogruluk tablosu

Girisler

Cikislar

NAND

OR

N

R

XNOR

1

— = OIS

—_— o= o |

e ===V

0
1
1
1

olo|lo~0

ol—|— o0

— OO




1.3 Mantiksal Operatorler

Ornek 7.5: Mantiksal yar1 toplayict devresinin VHDL yazilimini, clk ve rst
sinyallerine bagli olarak (ardisil tasarim temelinde) gerceklestiriniz.

Library icee;
Use ieee.std _logic 1164.all,

Entity yari_toplayici is

Port (clk, rst, a, b: in std logic;
s,c: out std_logic);

End yari_toplayici;

Architecture davranis of yari_toolavici is

Begin
clk D

DX

—Toplam (Sum —25)
— Elde (Carry =>C)

HA

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

Process (clk, rst)
J i

CLR

g <= vov;

™ C

D

Begin
If (rst="1") then
[
« [

c <= vov;
Elsif rising_edge(clk) then

o = ]
—

RTL_AND

RTL_REG_ASYNC

s <=aXxor b;
¢ <=aand b;
End if;
End process;
End davranis;

CLR

RTL_XOR

> C

D

RTL_REG_ASYNC




1.4 Kaydirma Operatorleri

= Kaydirma operatorleri, siklikla bit vector ve std logic vector (unsigned veya
signed’a cevirilen) tiirtiindeki tek boyutlu vektorlerde kaydirma islemi icin kullanilir,

= [slem neticesinde aym boyutta ve tiirde vektor olusur. Kaydirma islemleri
mantiksal ve aritmetik olmak tizere ikiye ayrilir.

Kaydirma Operatorleri

Islev

Vektor icindeki elemanlar1 operatoriin

V <="00001111";

: : saginda taniml olan sayt kadar sola Y <=VSLL 1;
Shift Left Logic (SLL) kaydirir. Herbir kaymada en soldaki eleman Sonug;
atilirken, en sagdan ‘0’ degeri eklenir. Y <="00011110";
Mantiksal
Vektor igindeki elemanlar1 operatériin V<="01100111";
o Ty . saginda taniml olan sayt kadar saga Y <=V SRL 2;
Shift Right Logic (SRL) kaydirir. Herbir kaymada en sagdaki eleman Sonug;
atilirken, en soldan ‘0’ degeri eklenir. Y <="00011001";
Vektor igindeki elemanlar1 operatioriin V <="00100011";
: : . saginda taniml olan sayt kadar sola Y <=V SLA 2;
Shift L&t SfiGihcnc QLAY kaydirir. Herbir kaymada LSB biti Sonug;
tekrarlanarak sagdan eklenir. Y <="10001111";
Aritmetik

Shift Right Arithmetic (SRA)

Vektor icindeki elemanlar1 operatoriin
saginda taniml olan sayt kadar saga
kaydirir. Herbir kaymada MSB biti
tekrarlanarak soldan eklenir.

V <="01100010";
Y <=V SRA 1;
Sonug;

Y <="00110001";




I-z -4 KaYdll’ma operataﬂe“ SRA ve SLL kaydirma ornekleri

Tumleyeni

1/0(/0/1/1/0/010 »| alinmis (negatif)

isaretli say1

:SRAilekaydlrma: ol1l1lol1lo0lo0lo0 »| -104

]

2' ye timleme

0, 0{12/1/0/1 0[0]| »| -52

+7 |« 0,00 001 11 ):___S_L_L_ﬂe___

AT K
+14 1< 0000|111 0|«0

= Goriilen ornekte decimal 7 sayis1 SLL operatori ile otelenmis (‘0° biti
eklenerek sola kaydirilmis) ve decimal 14 sayisi elde edilmistir.

= Ikili sayilarda ‘0’ biti ile kaydirma mantig1 geregi; sola kaydirmada ¢*2’
1slemi yapilirken, saga kaydirmada ¢/2° islemi yapilir.



1.4 Kaydirma Operatorleri

SRA ve SLL kaydirma ornekleri

Tumleyeni

1/0/0/1/1/0/ 010 »| alinmis (negatif)

isaretli say1

| SRAlekayduma i [g[1 1 ]0]1]0]0]0] »[-104

2' ye tiimleme

0(01/1|0|1 00| »| -52

7 ]« [oJoJo oJo]1]1]1 3:"‘8115(;":
: ' e e |

| | o s
+14 (<« |0]0[0|01/1]|1 0 <0

= Aritmetik kaydirma islemi, genelde negatif sayilar: islemede (tiimleyeni
alinmis) degerler icin isaret bitinin kaybolmamasini saglar.



1.4 Kaydirma Operatorleri
SRA ve SLL kaydirma érnekleri

Tumleyeni

1,0/ 0/1|1/0/010 »| alinmis (negatif)

isaretli say1

2' ye tiimleme

:SRAilekaydlrma| O/1/11/0/1/0/010

_______________

»| -104

1/1/0/{0/1/1|/0|0

2' ye timleme

0, 0/1 1/0/1 00| »| -52

+7 |« .O _O 0 .O _O 11 _.1 )i___s_]:]:ﬁe_ o
| _ _ N _
+14 |« |0/ 0(0/0]1|1]1|0 <0

__________

= Sekilde goriildiigii gibi, tiitmleyeni alinmis (negatif) isaretli sayinin SRA
kullanilarak otelenmesi gereklidir.

=Aksi takdirde negatif sayi iizerine ¢/2’ islemi gerceklestirilemez.



1.4 Kaydirma Operatorleri

Ornek 7.6: Asagida belirtilen VHDL koduna gére sonucl, sonuc2, sonuc3 ve

sonuc4 nesnelerinin ikili karsiliklarini yaziniz.

Entity kaydirma uyg is
End kaydirma uyg;

sonucl = 10100100 | Aychitecture davranis of kaydirma uyg is

sonuc2 = 00011010 signal vektor: bit vector (7 downto 0) :=="01101001";

sonuc3 = 10100111

Begin
sonuc4 = 00011010

sonucl <= vektor sll 2;

sonuc2 <= vektor srl 2;

sonuc3 <= vektor sla 2;

sonuc4 <= vektor sra 2;
End davranis;

Port (sonucl, sonuc2, sonuc3, sonuc4: out bit vector(7 downto 0));

= Kaydirma operatorlerinin kullanilmasi i¢in asagidaki komutun (numeric_std

paketinin) isletilmesi gereklidir:

Paket tammmlama komutu: Use icee.numeric_std.all;

@




1.5 Cevirme / Dondiirme Operatorleri

= Cevirme / Dondiirme operatorleri, siklikla bit_vector ve std_logic_vector (unsigned

veya signed’a cevirilen) tiriindeki tek boyutlu vektorlerde dondiirme islemi icin
kullanilir. Sonugta ayni tiir ve boyutta yeni bir vektor elde edilir.

=Saga dondiirme (Rotate Right = ROR) isleminde vektor i¢indeki degerler saga
kaydirilirken, LSB biti MSB’ nin yerini alir (dizi soluna LSB gelir).

= Sola dondiirme (Rotate Left - ROL) isleminde vektor igindeki degerler sola
kaydirilirken, MSB biti LSB’ nin yerini alir (dizi sagina MSB gelir).

ROR ve ROL ile dondiirme ornekleri

_—_— e, e, e, e, e, e e e, e — — — = d

— e - - —— - - —— e —— —— - —— — o]




1.5 Cevirme / Dondiirme Operatorleri

Ornek 7.7: Asagida belirtilen VHDL koduna gére sonucl, sonuc2, sonuc3 ve
sonuc4 nesnelerinin ikili karsiliklarin1 yaziniz.

sonucl = 11010010
sonuc2 = 10100101
sonuc3 = 10110100
sonuc4d = 01011010

Entity dondurme uyg is

Port (sonucl, sonuc2, sonuc3, sonuc4: out bit vector(7 downto 0));

End dondurme uyg;

Architecture davranis of dondurme uyg is

signal vektor: bit vector (7 downto 0) :="01101001";
Begin

sonucl <= vektor rol 1;

sonuc?2 <= vektor rol 2;

sonuc3 <= vektor ror 1;

sonuc4 <= vektor ror 2;
End davranis;

= Dondiirme operatorlerinin kullanilmasi i¢in asagidaki komutun (numeric_std
paketinin) isletilmesi gereklidir:

Paket tammmlama komutu: Use icee.numeric_std.all;

©




1.6 Karsilastirma Operatorleri

= [ki adet ayni tiirden veriyi karsilastiran ve boolean tiiriinde (true veya false) veri
lireten operatorlerdir.

= Bu operatorler IF ve WHEN vyapilan ile siklikla kullanilir. Vektor seklinde tanimli
nesneler karsilastirilacagl zaman, dizi tiirii ve boyutlar: ayni olmak zorundadir.

Karsilastirma Operatorleri

Operator Sembolii Islev
a=b Esittir aesitb
a/=b Esit degil a esit degil b
a<b Kiictiktiir a kiiciik b
a<=b Kiiciik esit a kiiciik veya esit b
a>b Blytktir a bityiik b

a>=b Biiytik esit a biiyiik veya esit b




SONRAKI DERS KONUSU

8- KOMBINASYONEL LOJIK DEVRELER

©



ILERI SEYISAL SISTEMLER

8- KOMBINASYONEL LOJIK DEVRELER

Ders sorumlusu:

Do¢. Dr. Hasan KOYUNCU



8. KOMBINASYONEL LOJIK DEVRELER

= VHDL tasarim dili ile sonradan degistirilebilir sayisal devre tasarimlari
gergeklestirilebilmektedir.

= Bu devre tiplerinden biri de kombinasyonel devrelerdir.

= Bu devreler, herhangi bir hafiza birimi icermezler ve girisindeki veriyi
tasarim fonksiyonuna gore isleyerek dogrudan cikis uretirler.

= Mantik kapilar1 ile gerceklenen devreler olmak lizere; toplayici, ¢coklayici
ve kodlayicl gibi devreler kombinasyonel devre tasarimi ile gerc¢eklenir.



8.1 Katmanli Devre Tasarimi

= Katmanli devre tasarimlarinda, blok ¢ikislar1 i¢cin ara kablo baglantilar:
belirtilerek komplike tasarimlarda esneklik saglanir.

= Bu kablo baglantilar1 genelde sinyal tiirinde tanimlanar.

= Ara kablo baglantisi kullanmadan da yalin kodlar ile tasarim
saglanabilmektedir.

Ornek 8.1: Asagida belirtilen devreyi VHDL dilinde tasarlayiniz.

Dy




8.1 Katmanli Devre Tasarimi

e2

Ornek 8.1: Belirtilen el
devreyi VHDL dilinde ?—
tasarlayimiz. c

d

Library ieee;
Use ieee.std logic 1164.all;

Entity eszamanli_islem is
Port (a, b, c,d : in std logic;
f: out std logic);

End eszamanli_islem;

Architecture davranis of eszamanli islem is

signal el, e2: std logic; -- ara kablo tanimlamasi
Begin

el <=a nand b; -- kablo ara sonucu

e2 <=el or c; -- kablo ara sonucu

f<=e2 nor d;
End davranis;

Ara kablo kullanmadan;

f <= ((anand b) or c) nor d;



8.1 Katmanli Devre Tasarimi

= Bazi1 sentezleyicilerde nand ve nor kapilarina dair komutlar tanimli degildir.

=Farkli sentezleyiciler arasi (Quartus, Vivado, Lattice, ...) kod aktarimi
yapilacaksa, sikinti1 olmamasi adina;

= a nand b = not (a and b) veya

= a nor b =not (a or b) seklinde yazim da tercih edilebilir.

Dy,

e10.i

a D - Vivado /

0]

. Elaborated Design Ciktis1

b D—'i RTL AND 0 2 (RTL Sematik Diyagramai)
‘ D RTL_OR foi fi




8.1 Katmanli Devre Tasarimi

Ornek 8.2: Asagida belirtilen devreyi VHDL dilinde tasarlayiniz.

o —D

el

Library iece;

Use icee.std logic 1164.all; b ! | {>O : f1
Entity karma islem is
Port (a, b, ¢ : in std logic; ¢ 02
f1, £2 : out std logic);
End karma islem; /2

Architecture davranis of karma islem is
signal el, e2: std logic; -- ara kablo tanimlamasi

Begin
el <= not a and b; -- kablo ara sonucu
e2 <=Db or c; -- kablo ara sonucu Ara kablo kullanmadan;

fl <=not el xor e2;
f2 <=e2 nand c;
End davranis; f2 <= (b or ¢) nand c;

f1 <= (not (not a and b)) xor (b or c);




8.1 Katmanli Devre Tasarimi

Ornek 8.2: Asagida belirtilen devreyi VHDL dilinde tasarlayiniz.

>c> .

c
D “ Vivado /
2 Elaborated Design Ciktis1

(RTL Sematik Diyagramai)

)—I RTL_AND RTL_INV

RTL_XOR
el i
10
ﬁ\ o
—\ 1 J
RTL_OR o f20 f2.i
\ 0] 10 0]
11 }

RTL_AND RTL_INV




8.2 Coklayicilar

= Lojikte coklayic1 veya multiplexer olarak bilinen ve bir grup giristen
yalnizca bir tanesini secerek cikisa aktaran kombinasyonel elemandir.

« Islemci birimleri gibi komplike yapilarin en temel bilesenlerinden birisidir.

= Bir ¢oklayicinin normal giris portlarmin L _\1 adet ks
yanisira secme girisleri de bulunur ve o et |

secme girislerinin alacagi duruma gore giris < l
gerekli girisin ¢ikisa aktarilmasi !

saglanir.

\
\
\
N I
~_1n-1

= Coklayicilarin VHDL i¢inde
tanimlamalari, bircok farkh S,
kombinasyonel elemanin tanimlanmasini SO
saglayan kosullu atama veya se¢meli |
atama ile saglanabilir.

Sn-l /
/

/

/

/

n adet secme ucu

Coklayici (Multiplexer) yapisi



8.3 Kosullu Atamalar (When-Else)

= Bir sinyal nesnesine; belirli bir grup degerden yalmzca birinin
aktarilmasi icin, gerekli sart yerine geldigi durumda atama saglayan
islemdir.

= Kosullu atama islemi When-Else i1fadesi isletilerek saglanir ve tiimlesik
devre tasarimlarinda siklikla tercih edilir.

= Gerekli kosul When 1fadesinden sonra yazilir.

Tamimlama komutu: f<=ifade 1 When kosul 1 Else

ifade 2 When kosul 2 Else

ifade n;



8.3 Kosullu Atamalar (When-Else)

= 2:1 MUX vyapisma dair dogruluk tablosu yan tarafta

sunulmustur.

= Iki bit giris oldugundan ve segme ucunun da analize 0
dahil edilmesi gerektiginden 3 bitlik durumun

incelenmesi gerekir.

= Buna gore ‘s’ secme ucu ‘0’ oldugu durumda “a’ girisi
f cikisina aktarilir ve s=1 oldugu durumda ‘b’ girisi f

cikisina aktarilacaktir.

—_— = OO == OO
—_ O | = ORI =k O T

—_— O = O = | OO | m

= When-Else ifadesi ile VHDL kodu asagidaki gibi yazilabilir.

Library ieee;
Use iece.std logic 1164.all;

Entity multiplexer kodu is

Port (a, b, s : in std logic;
f: out std logic);

End multiplexer kodu;

Architecture davranis of multiplexer kodu is
Begin
f <=a When s='0' Else -- s=0 ise a degerini ata
b When s='1" Else -- s=1 ise b degerini ata
'Z'; --eger se¢me sinyali lojik-0 veya lojik-1
degilse Z ata
End davranis;




8.3 Kosullu Atamalar (When-Else)

Vivado /
Elaborated Design Ciktis1
(RTL Sematik Diyagrami)

) S=1b0 10
> o By
S=default I )
D
/ RTL_MUX
S
T\ Sentezlenemedi
: / 7y
Library iece; Architecture davranis of multiplexer k¢du is
Use ieee.std logic 1164.all; | Begin
f<=a When s='0' Else -- s=0 1se a defperini ata

Port (a, b, s : in std logic; | --eger se¢me sinyali lojik-0 veya lojik-1
f: out std_logic); degilse Z ata
End multiplexer kodu; End davranis;

Entity multiplexer kodu is hen s='1" Else -- s=1 ise b dqgerini ata
'z




8.3 Kosullu Atamalar (When-Else)

Ornek 8.3: VHDL dilinde
yazilmis bir yapay zeka
simiflandirma algoritmasi
ile akciger verilerine dair 4
farkli smifin ayirt edilmesi
1stenmistir.

Bu siniflar; saglhkli (00),
bronsit (01), astim (10) ve
nodiil (11) seklindedir.

Yapay zeka cikis birimi
i¢cin gerekli VHDL
siniflama kodunu yaziniz.

(Not: yapay zeka ¢ikisi
MUX se¢gme ucuna gore
atanacaktir ve herbir sinif
MUX girisidir)

Library ieee;
Use icee.std logic 1164.all;
Use std.textio.all;

Entity cikis birimi is

Port (secim : in std logic vector (1 downto 0);
cikis : out string (1 to 3));

End cikis_birimi;

Architecture davranis of cikis birimi is
Begin
cikis <= "SAG" When secim = "00" Else

"BRO" When secim = "01" Else
"AST" When secim = "10" Else
"NOD" When secim ="11" Else
"XXX";

End davranis;




8.3 Kosullu Atamalar (When-Else)

Bu smiflar;
saglikli (00),
bronsit (01),
astim (10) ve
nodiil (11)
seklindedir.

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

cikis[1]_1

Karakter tiru
sentezlenemez

Architecture davranis of cikis_birimi is
Begin
cikis <= "SAG" When secim = "00" Else

"BRO" When secim ="01" Else
"AST" When secim ="10" Else
"NOD" When secim ="11" Else
HXXXH;

End davranis;

A

kis[1]_i__2
cikis[11.i__1 cikis[1]_i__

V=B"1001110", 5=2b11 10[6:
. [6:0] \ o601

W=B"1011000", S=default  |1[6:0]

5157 T RTL MUX
seam[1:0] >

cikis[2]_i

V=B"1001111". 5=b11 10[6:
15:0] \ 0[60]

cikis[1]_i_0 W=B"1010011", 5=2000  10[6:0]
; . : ) V=B"1000010", S=2b01__ 10[6:0] \l - -
=B"1000001 :zf::i :113{:3]] \I ol69] e aeter 1(6:0] 0[6:0] s=default  11[6:0]
spid | RTLMUX sid) | RTLMUX sy | RILMOX
- cikis[2Li_1 clkisl2l 12
cikisl2LL_0 V=B"1010010°, S=2b01  10[6:0] \l V=B1000007" 5=2600 10(6:0) &
V=B"1010011", 5=2b10  10[6:0] \I 1501 ;s:dmu“ 0[6:0] s=default  [1[6:0] —D

V=B"1011000", S=default  |1[6:0]

s | RTLMUX

cikis[3]i

V=B1000100°, S=2b11__ 10[6:0]
o[640]

V=B"1011000", S=default  |1[6:0]

11[6:0)
S=defauilt 11[6:0] RTL_MUX
S[1:01 —
. 1,f|)RTL_MU)( sy | RTLMOX

cikis[3]i_2

cikis[3]_i__1
cikis[3]1_0 1L V=B"1000111", 5=2600  10[6:0]

V=B1001111", 5=2p01__ |0[6:
V=B8"10101007, S=2b10  [0[6:0] [E:2, \l O[6:0] s=default  11[6:0]
0[6:0] S=default

5= defauit 11[6:0] 116:0)

s | RTLMUX

s[10
ol TRTL MUK s | RTL_MUX

4D

cikis[1][7:0]

cikis[2][7:0]

cikis[3][7:0]




8.4 Secimli Atamalar (With-Select)

= Tiimlesik devrelerde siklikla tercih edilen bir diger atama yontemi de With-
Select 1fadesidir.

= Secimli atama olarak bilinen bu atama yoOntemi, kosullu yontem olan
When-Else ifadesine benzer, ancak yazim bicimi bakimindan farkhhk
gosterir.

= Genel programlama dillerinde Switch-Case ifadesine benzer islev goriir.

= Gerekli segme deyimi With ve Select ifadeler1 arasina, segme deyiminin
alabilecegi ifadeler When sonrasina, se¢ime gore gerekli kosul ise When
oncesine yazilir.

= Tek cikisin oldugu kombinasyonel tiimlesik tasarimlarda siklikla tercih
edilir.



8.4 Secimli Atamalar (With-Select)

Tamimlama komutu: With secme deyimi Select
f <=1fade 1 When secenek 1,
ifade 2 When secenek 2,

ifade n When Others;

= Coklayic1 (Multiplexer) yapisinin When-Else yerine With-Select ifadesi
tizerinden eldesini inceleyelim.

Library ieee; Architecture davranis of multiplexer kodu is
Use icee.std logic 1164.all; Begin
With s Select
Entity multiplexer kodu is f<=a When '0',
Port (a, b, s : in std logic; b When '1’,
f: out std logic); 'Z' When Others;
End multiplexer kodu; End davranis;




8.4 Secimli Atamalar (With-Select)

Library icee; Architecture davranis of multiplexer kodu is
Use icee.std logic 1164.all,; Begin
With s Select Sentezlenemedi
Entity multiplexer kodu is f<=a When '0',
Port (a, b, s : in std logic; b When 'l', ‘
f: out std _logic); hen Others;
End multiplexer kodu; End davranis;
fi Vivado /

Elaborated Design Ciktisi
(RTL Sematik Diyagramai)
S=1b0 10
° D,
f
S=1b1 I

/ RTL_MUX

v %JU




8.4 Secimli Atamalar (With-Select)

Ornek 8.4: Ornek 8.3’ teki cevab: With-Select ifadesi ile gercekleyiniz.

Library iece;
Use ieece.std logic 1164.all;
Use std.textio.all;

Entity cikis birimi is

Port (secim : in std logic vector (1 downto 0);
cikis : out string (1 to 3));

End cikis birimi;

Architecture davranis of cikis birimi is
Begin
With secim Select
cikis <= "SAG" When "00",

"BRO" When "01",
"AST" When "10",
"NOD" When "11",
"XXX" When Others;

End davranis;




8.4 Secimli Atamalar (With-Select)

secim[1:0] D—I

cikis[1] i
V=B"1010011", 5=2'b00  10[6:0]
V=B"1000010", 5=2'b01 11[6:0]
O[6:0] 6:0
V=B"1000001", S=2'b10  12[6:0]
V=B"1001110", 5=2'b11  13[6:0]
S[1:0] RTL_MUX
cikis[2] i
V=B"1000001", 5=2'b00  10[6:0]
V=B"1010010", 5=2'b01 11[6:0]
O[6:0] 6
V=B"1010011", 5=2'b10  12[6:0]
V=B"1001111",5=2b11  |3[6:0]
S[1:0] RTL_MUX
cikis[3] i
V=B"1000111",5=2'b00  10[6:0]
V=B"1001111",5=2b01 11[6:0]
0[6:0] &:(
V=B"1010100", 5=2'b10  12[6:0]
V=B"1000100", 5=2'b11 13[6:0] —
S[1:0] RTL_ MUX

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

Karakter tiuri
sentezlenemez

> cikis[1][7:0]

Ornek 8.4:
Ornek 8.3’
teki cevabi
With-Select
1fadesi ile
gercekleyiniz.

) cikis[2][7:0]

[ > cikis[3][7:0]



8.9 Tekleyiciler

= Coklayicilarin gerceklestirdigi islevin tam tersini saglarlar.

= Giris portundaki veriyi, se¢cme uclarina gore istenilen c¢ikisa aktarir.
Tekleyici gosterimi, ¢oklayicinin dikeyde aynalanmis halidir.

1 adet giris / S QO

n adet secme ucu

Tekleyici (Demultiplexer) yapisi



8.9 Tekleyiciler

= 1:4 Tekleyici (Demultiplexer) i¢in gerekli VHDL konunu, 3 bitlik veri
isletilecek sekilde (With-Select ifadesi lizerinden yazimi daha fazla kod satiri
igereceginden) When-Else 1fadesi iizerinden yazalim.

Library ieee;
Use icee.std logic 1164.all;

Entity demux 1le4 is
Port (giris : in std logic vector (2 downto 0);
secim : in std logic vector (1 downto 0);
Q0,Q1,Q2,Q3 :outstd logic vector (2 downto 0));
End demux_1le4;

Architecture davranis of demux le4 is

Begin
QO <= giris When secim="00" Else "ZZZ";
Q1 <= giris When secim="01" Else "Z277";
Q2 <= girts When secim="10" Else "Z277";
Q3 <= giris When secim="11" Else "Z277";

End davranis;




Derleyici yuksek
empedansi temsili
olarak tri-state buffer
karsihigi ile gercekledi.

8.9 Tekleyiciler Vivado /

Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

_ Q0 _reg
Qo0 i I[2:0] | 0[2:0] ™ Qo20]
s=2'b00  10[2:0] \ 020 DE[2:0]j RTL_TRISTATE
s=default  11[2:0] J [29]
spiop | RTL_MUX
Q1_reg
Q10.i g— (20 T, O[20] [ Qi[20]
- L
s=2b01  10[20] | T o0 OE[2:0] | RTL_TRISTATE
S=default  11[2:0] [20]
"
spio) | RTL.MUX
L Q2_reg
Q20 | g—1120] ™~ _O120] [ Q220
- =
s=2b10 10[20] | e 0120 OE[2:0] | RTL_TRISTATE
s=default  11[2:0] [29]
T
spiop | RTL_MUX
| |
giris[20] [ Q3_reg
Q30 i T I[2:0] | 0[2:0] o Q3o
secim[1:0] [D>—+ - '
serom 1020} [y OE[20] | RTL TRISTATE
S=default  11[2:0] [20]
sp:o | RTL_MUX




8.6 Kodlama Devresi

= Kodlama, veriyi farkh formalara doniistiirmek icin isletilir.

= BCD, Gray, Excess-3 kodlama gib1 farkli formlarda bir¢cok kodlama

yontem1 mevcuttur.

= Yine lojik tabanda kodlayic1 (encoder) yapisi en temel kodlayici

formudur.

= Kodlayicillar, coklayict ve tekleyicilerde
oldugu gib1 giris : ¢itkig basamaklarina gore
isimlendirilir.

= Buna gore 4 girisi ve 2 c¢ikist olan bir
kodlayict  yapisinin  gosterimi  i¢in @ 4:2
Kodlayici ifadesi yazilir.

lo —
[ —
[, —
[ —

Encoder

4:2 Encoder yapisi



8.6 Kodlama Devresi

= Lojik tabanda en temel kodlayici olan encoder yapisi icin 4:2 =
giris:cikis olacak sekilde VHDL kodunu When-Else ifadesi ile yazalim.

Library ieee;
Use ieee.std logic 1164.all;

Entity encoder 4e2 is

Port (giris : in std logic vector (3 downto 0);
cikis : out std logic vector (1 downto 0));

End encoder 4e2;

Architecture davranis of encoder 4e¢2 is
Begin
cikis <="00" When giris = "0001" Else

"01" When giris = "0010" Else
"10" When giris = "0100" Else
"11" When giris = "1000" Else
nzzn;

End davranis;




8.6 Kodlama Devresi

= Lojik tabanda en temel kodlayici olan encoder yapisi icin 4:2 =
giris:cikis olacak sekilde VHDL kodunu When-Else ifadesi ile yazalim.

Begin

End davranis;

Architecture davranis of encoder 4e2 is

cikis <="00" When giris = "0001" Else
"01" When giris = "0010" Else
"10" When giris = "0100" Else
"11" When giris = "1000" Else

HZZ";

cikis_i

cikis3_i

A30]  O[14]

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

cikis_i_0

S=4'p0001

Derleyici yiiksek
empedansi temsili
olarak tri-state buffer
karsihig ile gercekledi.

T_l

W=B"01", 5=4'b0010 _ 10[1:0]
O[1:0]

S=default

s=defsutt  11[1:0]

RTL_ROM

giris[3:0] > A[30] O[]

RTL_.ROM

s | RTLMUX

cikis1_l

s=4boo1o  10[1:0]

O[1:0]

5=4'b0001

cikis_i__1
10[1:0] \‘ o o Cikis—c;ﬁ.g
110] a (0] -, Oft0) D cikis10]
OE[1:001 | RTL_TRISTATE
sz | RTLMUX
cikis0_i
i0[1:0

s=defaur  11[1:0]

cikis2_i
s=4p0i00  10[1:0] oli:
S=defautt  [1[1:0] L1:0]
si3:0) | RTL.MUX

S=default

11{1:0]

sz | RTLMUX

=

53

o[1:0
% | RTL.MUX




8.1 Kod Coziucu Devre Tasarimi

= Kod c¢oziicii birimler, kodlayicilar tarafindan kodlanmis verinin ilk halini
elde etmek amaciyla isletilir.

= Decoder olarak da bilinen bu yapilar; RAM ve tampon belleklerde gerekli
bellek boliimiinii adreslemek, 7-segment display siirmek ve veri ¢coklama gibi
bir¢cok amag icin kullanilir.

= Kod ¢oziiciilerde de kodlayicilarda oldugu gibi isimlendirme yapilir.

- Qo
= Ornegin; 2 girisi ve 4 cikis1 olan bir lo — Decod — Qi
decoder yapisinin gosterimi i¢in 2:4 Decoder |1 — ecoder | Q:
ifadesi yazilr. Q;

2:4 Decoder yapisi



8.1 Kod Coziucu Devre Tasarimi

= Bu kod ¢oziiciiniin VHDL kodunu When-Else ifadesi lizerinden yazalim

Library ieee;

Entity decoder 2e4 is

End decoder 2¢4;

Use icee.std logic 1164.all;

Port (giris : in std_logic_vector (1 downto 0);
cikis : out std _logic vector (3 downto 0));

Architecture davranis of decoder 2e4 is
Begin
cikis <="0001" When giris = "00" Else

"0010" When giris = "01" Else
"0100" When giris = "10" Else
"1000" When giris ="11" Else
"2777";

End davranis;




8.1 Kod Coziucu Devre Tasarimi

= Bu kod ¢oziiciiniin VHDL kodunu When-Else ifadesi lizerinden yazalim

Begin

cikis <=

End davranis;

Architecture davranis of decoder 2e4 is

"0001" When giris = "00" Else
"0010" When giris ="01" Else
"0100" When giris = "10" Else
"1000" When giris ="11" Else
"2777";

5=2b11

cikis3_i

S=default

10[3:0] \
0O[3:0]

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

cikis_i

cikis_i_0
10[3:0]

V=B 0010, S=2 b1
V=B'0100", 5=2b10  10[310]
O3] S=dsfaut

0O[3:0]

olarak tri-state buffer
karsihig ile gercekledi.

Derleyici yiiksek
empedansi temsili

W=B00M " 5=2000

S=default

W=B"1000", S=dsfacit  |11[3:0]

spi | RTLLMUX

11[3:0]
mﬂ)RTL_MUX

cikis2_i

cikis1_i

10[3:0] \
O[3:0]

S=200
5=2010  10[3:0]
9] \ OB s-sfaut

5=2b00

S=default

11[3:0]

Sodefaut 11[30]

11[3:0]

giris[1:0] D -T=

s | RTLMUX

spg | RTLMUX

s | RTLLMUX

cikis_i_1
IG[BQL\ 0[3:0] 1[3:0] cikis_or[ea%)]
11[3:0] : I s IR [ cikis[3:01
OE30] | RTL_TRISTATE
sty | RTLLMUX
cikis0_i
10[3:0]
0O[3]
11[3:0]
sty | RTLLMUX




8.8 Toplama Devreleri

=Lojik tasarimin en temel boliimlerinden biri oldugundan bir¢ok toplama
devresi tasarimi1 mevcuttur.

= Aritmetik islemlerin saglanabilmesi i¢cin Std_logic_arith / Numeric_std
paketinin tanimlanmasi gerekir.

= Normal bir toplamada iki adet n bitlik say1 toplandig1 zaman, (n+1) bit
cikis elde edilecektir. Bu noktada (n+1). bit elde cikisini tutar.

4 bit toplama

/—\\/\ T~

"As A Al Ao
4 B:B:Bi B

Cout3 F3 F2 Fl FO
Pl

I, ¥, @, 2, 7
G " 6,784,

.J}./}

4 bitlik toplama islemi érnegi



8.8 Toplama Devreleri

= 4 bitlik 1k1 sayinin
toplanmasini saglayan
toplama devresi i¢in
gerekli kodu VHDL dilinde

yazalim.

= Kod yazmada kolaylik
saglanmasi i¢in, generic
deyimi 1le bu islemi
gerceklestirelim.

Tasarim-1

Library ieee;
Use ieee.std logic 1164.all;
Use ieee.std logic arith.all;
Use ieee.std logic unsigned.all,;

Entity toplayici 4bit is
Generic (k : natural ;= 4);
Port (A : in std logic vector (k-1 downto 0);
B :in std _logic vector (k-1 downto 0);
elde : out std logic;
fcik : out std logic vector (k-1 downto 0));
End toplayici_4bit;

Architecture davranis of toplayici 4bit is
signal ara islem : std logic vector (k downto 0);
Begin
ara_islem <= (‘0 & A) + (‘0’ & B);
fcik <= ara islem (k-1 downto 0);
elde <=ara islem (k);
End davranis;




8.8 Toplama Devreleri

Tasarim-1

Architecture davranis of toplayici 4bit is
signal ara islem : std logic vector (k downto 0);
Begin
ara_islem <=(‘0’ & A) + (‘0’ & B);
fcik <= ara_islem (k-1 downto 0);
elde <= ara_islem (k);
End davranis;

= 4 bitlik iki sayinin
toplanmasini saglayan
toplama devresi i¢in

gerekli kodu VHDL
dilinde yazalim.

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

>  elde
plusOp_i

feik[3:0]

A[3:0]

B[3:0]

RTL_ADD




8.8 Toplama Devreleri

Tasarim-2

Library ieee;
Use icee.std logic 1164.all;
Use icee.numeric std.all,;

Entity toplayici_4bit is
Generic (k : natural := 4);
Port (A, B : in std logic vector (k-1 downto 0);
elde : out std logic;
fcik : out std logic vector (k-1 downto 0));
End toplayici_4bit;

Architecture davranis of toplayici 4bit is
signal ara_islem : unsigned (k downto 0);
Begin
ara_1slem <= unsigned('0' & A) + unsigned('0' & B);
fcik <= std logic vector(ara islem (k-1 downto 0));
elde <= ara islem (k);
End davranis;




8.8 Toplama Devreleri

Tasarim-2

Architecture davranis of toplayici 4bit is
signal ara_islem : unsigned (k downto 0);
Begin
ara_islem <= unsigned('0' & A) + unsigned('0' & B);
fcik <= std_logic_vector(ara islem (k-1 downto 0));
elde <= ara islem (k);
End davranis;

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

elde

ara_islem_i

A[3:0]

B[3:0] D

0[4:0]

30 D fcik[3:0]

RTL_ADD




8.9 Karsilastirma Devresi

= Karsilastirma islemi, iki terimin ii¢c kosulda kiyaslanmasi amaciyla
kullanilir.

= Matematiksel anlamda da kiyaslamada; degerlerden birisinin digerinden
kiiciik, digerinden biiyiik veya birbirlerine esit olma durumlari meydana
gelebilir.

= Bu baglamda kiyaslama devreleri, n bitlik iki girise gore ii¢ farkh
durumun analizini saglarlar.

=4 bitlik 1ki saymin kiyaslanmasini saglayan devreyr When-Else 1fadesi
lizerinden yazalim.



8.9 Karsilastirma Devresi

= Bu noktada matematiksel olarak ii¢c durumdan yalnmizca birisi etkin
olabilecegi icin, herbir secenekte Else sonrasi ‘0’ yazilmasi gereklidir.

Library iece;
Use ieee.std logic 1164.all,;

Entity karsilastir 4bit is

Generic (n : natural ;= 4);

Port (sayil, sayi2 : in std logic vector (n-1 downto 0);
kucuk, esit, buyuk : out std logic);

End karsilastir 4bit;

Architecture davranis of karsilastir 4bit is
Begin
kucuk <="'1"' When sayil<sayi2 Else '0';
esit <="'l1' When sayil=sayi2 Else '0';
buyuk <="'1' When sayil>sayi2 Else '0';
End davranis;




8.9 Karsilastirma Devresi

sayi1[3:0]

sayi2[3:0]

Vivado /

Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

buyuk0 _i

10[3:0]
0
11[3:0]

"/

RTL_GT

esit0 i

[D—
[D>——

10[3:0]
) 0
11[3:0]

"/

RTL_EQ

kucukO i

> esit

10[3:0]
0
11[3:0]

"/

RTLLT




8.10 Aritmetik Mantik Birimi

= Aritmetik Mantik Birimi (AMB); aritmetik ve lojik islemleri bir arada
gerceklestirmeyi saglayan, mikrodenetleyiciden mikroislemciye kadar birgok
1slemci biriminin yapitasi niteliginde olan sayisal devredir.

= Asagidaki sekilde goruldigi tizere; 4 ve B iki veriye dair giris portlarini,
kmt islem se¢cme ucunu ve F ise sistem cikis portunu simgeler.

A B

|
A\ AMB

Aritmetik Mantik Birimi
(AMB) genel semasi




8.10 Aritmetik Mantik Birimi

= Asagidaki sekilde ise kullanici istegi dogrultusunda tasarlanmis bir AMB
icyapis1 yer almakta, se¢cme wucuna gore islem sirast ise tabloda
sunulmaktadir.

A B
\/ Tasarlanan AMB’ nin islem sirasi
yv v v ’_YJL‘ L Islem Kodu (kmt) Islem
- LR [VEYA] VR 00 Cikarma
kmt\ *Coklawa > 7 <\:(> 01 Toplama
lF 10 VEYA
11 VE

Tasarlanan Ornek AMB i¢ yapisi



8.10 Aritmetik Mantik Birimi

= Giris verileri 4 bit oldugu durum i¢in gerekli VHDL kodunu once With-
Select sonra da When-Else ifadeleri tizerinden yazalim.

: : Tasarim-1
Library ieee;

Tasarim-2

Use ieee.std logic 1164.all;
Use ieee.std logic unsigned.all;
Use iece.std logic arith.all;

Entity ornek AMB is
Port (A, B : in std logic vector (3 downto 0);
kmt : in std logic vector (1 downto 0);

F : out std logic vector (3 downto 0));
End orneck AMB;

Architecture davranis of ornek AMB is
Begin
With kmt Select
F<=A-B When "00",

A +B When "01",
A or B When "10",
A and B When "11",
"Z777" When Others;

End davranis;

Library ieee;

Use ieee.std logic 1164.all;
Use ieee.std logic unsigned.all,
Use ieee.std logic arith.all;

Entity ornek AMB is
Port (A, B : in std logic vector (3 downto 0);
kmt : in std logic vector (1 downto 0);

F : out std _logic vector (3 downto 0));
End ornek AMB;

Architecture davranis of ornek AMB is
Begin
F<=A -B When kmt="00" Else

A +B When kmt="01" Else
A or B When kmt="10" Else
A and B When kmt="11" Else
W27

End davranis;




8.10 Aritmetik Mantik Birimi | Tasarim-1

FO_i

s [ LEY ) - o0l i
11[3:0]
o o . . . - he RTL OR S=2'b00  10[3:0]
= Giris veriler1 4 bit oldugu . F—
0[3:0]
durum i¢in gerekli VHDL kodunu s =210t
1 0[3:0] S=2b11  13[3:0]
oo 0 11[3:0] B
once With-Select sonra da
. . .o . RTL_SUB S[1:0] -
When-Else ifadeleri {izerinden .,
plusOp_i
yazalim. 50 [l -
1 0[3:0]
R 173:0] Q
Vivado / RTL_ADD
Elaborated Design Ciktisi
. . . FO_i_0
(RTL Sematik Diyagramai) LR E s NN
103:0] /
_______ RTL_AND
plusOp_i
10[3:0
AL3:0] > I1E3'01( RANCIED
) : . minusOp_i _
BI3:0] [ 0 RTL ADD 0[30] ogz0] Tasarim-2
10[2:0] < om0l |1[3:0]f - )
nEo) ) ' ) RTL_SUB
RTL_OR Fi Fi1
) i . Fi 0 -
ooy FOI_0 ol 100 — s=1e1  10[3:0] \‘ F_reg
@0 Y O[30] S=default  [1[3:0] s=1p1  10[3:0] e - 0[3:0] 1[3:0] [~._ O[3:0] D FI2:0]
RTLAND RTL MUX sooctew N30 X OEB:0] | RTLTRISTATE
¢] RTLLMUX 5 -
T Op_i_2 = Fi FOLT
) equp_i__ s=1p1  10[3:0] _ > )
kmt[1:0] [ :{1)3:31 /3 o] S=defauit 11[3:0] s=101  10[20] \ o130 s-j:.:.l :?g:g;
%\/ 7L MUK S_defau  11[20] : = -
RTL_EQ - RTL_MUX
=T RTL_MUX
eqOp_i .
10[1:0] ) eqOp_i_0
v=g10"_ 11[1:0] /30 o] _\o
v=p"01" [I1[1:0] =
RILEQ RTL_EQ
4 1 Op_i_1
- 10[1:0] &« g"_

11[1:0]



8.10 Aritmetik Mantik Birimi

= Giris verileri 4 bit oldugu durum i¢in gerekli VHDL kodunu once With-
Select sonra da When-Else ifadeleri tizerinden yazalim.

Tasarim-3

Library iece;
Use icee.std logic 1164.all;
Use iecee.numeric _std.all,

Entity ornek AMB is
Port (A, B : in std logic vector (3 downto 0);
kmt : in std logic vector (1 downto 0);

F : out std _logic vector (3 downto 0));
End ornek AMB;

Architecture davranis of ornek AMB is
Begin
With kmt Select
F <=std_logic_vector(unsigned(A) - unsigned (B)) When "00",

std logic vector(unsigned(A) + unsigned (B)) When "01",
A or B When "10",
A and B When "11",
"Z777" When Others;

End davranis;




8.10 Aritmetik Mantik Birimi

= Giris verileri 4 bit oldugu durum i¢in gerekli VHDL kodunu once With-
Select sonra da When-Else ifadeleri tizerinden yazalim.

Tasarim-4

Library ieee;
Use ieee.std logic 1164.all;
Use icee.numeric_std.all,

Entity ornek AMB is
Port (A, B : in std logic vector (3 downto 0);
kmt : in std logic vector (1 downto 0);

F : out std logic vector (3 downto 0));
End ornek AMB;

Architecture davranis of ornek AMB is
Begin
F <= std_logic vector(unsigned(A) - unsigned (B)) When kmt ="00" Else

std logic vector(unsigned(A) + unsigned (B)) When kmt ="01" Else
A or B When kmt="10" Else
A and B When kmt="11" Else
"ZZZZ";

End davranis;




8.10 Aritmetik Mantik Birimi

Tasarim-3
FO_i
= Girig verilert 4 bit oldugu 9 D—rp :fiz( oz )
durum i¢in gerekli VHDL . sus s-u00 030
kodunu oOnce With-Select | o) opy O o
FOi_ 0 S=2'b10  12[3:0] .
b s 10[3:0]
sonra da When-Else ifadeleri ﬁ/\ o5 S-bit s
lizerinden yazalim. \{ADD e T FLmox
kmt[1:0] D
R B[3:0] D—' lof3:0] O]
Vivado / ' o ) 01301
Elaborated Design Ciktisi R OR
(RTL Sematik Diyagramui) 01 2
10[3:0] —
11[3:0] -
RTL_AND
oy FOI_1 Fi
A0l [ ) 22 s=2b10__I03:0] \ o330 Tasarim-4
BR3:0] I RTL OR Sdctait T3] I sozooi 10[3:0]
_ s | RTLMUX sasteut__113:0]
’ FD_i_Z S[1:0] RTL_MUX F_I 1
:?i:gll 230) F00 . S:;ﬁ :?EE]] \\ 0:0] I[3:0] r«i’?%{am D 0
515 T RTLMUX OE[3:0] | RTL_TRISTATE

; F
RTL AND L2 opa0) 0[3:0] .
113:0] (\j/ oo - 0[3:0]
RTLADD RTL_SUB
__ E1i FO_i_3
. F2.i - s=2b00  10[3:0]
F3i s-zbo1  I0[3:0] \
s-zb10 10]3: \ O[3:0] Sedefait 11[3:0]
sezb1t 10[3:0] \ 0[2:0] o[z:0]

S=default  [1[3:0]

S=default  [1[3:0] S[1:0] RTL.MUX

kmt[1:0] [D—

see | RTLMUX

S=default  |1[3:0]
- ,[fl)RTL_M ux

56 | RTLMUX




8.10 Aritmetik Mantik Birimi

Tasarim-3
FO_i
.. . . . ¢ : . 10[3:0] _
= Giris verileri 4 bit oldugu **[D gy (g X g
durum i¢in gerekli VHDL L sus <2000 _0130)
. . S=2'b01  11[3:0]
kodunu oOnce  With-Select 1o S RCLB o NS
. . 10[3:0]
sonra da When-Else ifadeleri oy (RN s=2b11 D130
lizerinden yazalim. A0 o T mmux
kmt[1:0] D
B[3:0] D—. o O
11[3:0] ) S
RTL_OR
Tasarim-1 opg L2
1112:0] -
FO_i RTL_AND
ARl D T LA o[3:0] Fi
11[3:0] )
$=2'b00  10[3:0]
RTL OR
S5=2'b01 11[3:0] .
minusOp i S=2'b10  12[3:0] LD FI3:0]
103:0]
0[3:0] S=2'b11 13[3:0]
L 11[3:0]
RTLSUB st | RIEMUX
kmit[1:0] D
Vivado /

plusOp_i
B[3:0] D—- 03]

O[3:0]
11[3:0] u
[
RTL_ADD
030 -9
O[3:0]
11[3:0]

RTL_AND

Elaborated Design Ciktisi
(RTL Sematik Diyagramai)




8.10 Aritmetik Mantik Birimi

Vivado /

Elaborated Design Ciktisi
(RTL Sematik Diyagramai)

F_reg
I[30] [~  O[30]

or3:0 plusOp_i
AL3:0] > £ 0[2:0]
0 ( * minusOp_i
B0 D . RTL_ADD l0[0) o] Tasarim-2
10[3:0] - nEo |-
o) 0[3:0]
- . RTL_SUB
RTL_OR Ei 7 Fi
0[20] FOi 0 5=1b1  10[3:0] Fi__0 o0) i
3 - — S=1b1 3
O[3 =defaut 1[0 =101 I0[3:0) :
) _ e S—:ef‘la:; nEs-o} \ O[0 S=default__11[3:0] (30
RTL_AND RTL_MUX RTL_MUX
< RTL_MUX s -
F2_i
eqOp_i_2 s=1m1  10[3:0] Fii
10[1:0) 10[3:0
kmt[1:0] > [0] o Sodefaut 11[2:0] s1p1 I0[20] 0]
o | = (0] 0[32:0] S=default  11[3:0]
S=default A
RTL_MUX
RTL EQ - RTL_MUX
7T RTL_MUX -
eqOp_i .
10[1:0] eqOp_i_0
[o] 10[1:0]
oy N0 O veBor NL0) | =
RILEQ RTL EQ
= Op_i_1
10[1:0] « g‘_
Lo
RTL_EQ
i Fi
FO_i_1 -
. 103:0, _-—
AR . - : )
ol O nE:0) ) 0[3:.01 ssd:'”l" :?{:E]] \ 0[3:0] Fi o T 4
B3:0] RILOR = = s=zbot 10[3:0] \ o) asarim-
sp) | RTLLMUX S=default _11[3:0] -
o0 _FOJ12 s | RTLMUX Fi_1
1B 0O[3:0] - s=2b00  10[3:0] \ o0l
I RTLAND 10[3:0] 010 FO i S=defauit  11[3:0] -
= - 0[3:0 103: .
1B:01 (@ = e s ifl)RTL_Mux
RTLADD RTL SUB
B2 FW_i . F07I73
Fai al oot 10[3:0] \‘ s=zb00  10[3:0]
. 0B:0] s=zb10 10[3: \ 0[30] cedetat 0] O[3:0] S=default  |1[3:0]
s=zoht - \ O[%:0] Sedefait  11[3:0] - — -
S=defaut o7 | RTLLMUX

OER:0] | RTL_TRISTATE

1112:0]
- ﬁl)RTL_M ux

F_reg
[3:0] [~ O[3:0]

[ F3:.0

516 | RTLMUX

s | RTLMUX

kmt[1:0] [D—

OE[3:0] | RTL_TRISTATE

O Fi30



8.11 For-Generate Atamasi

= Tekrar edilmesi istenen basit islemler i¢in kullamilir. Tasarim noktasinda
atama blogu es zamanh (paralel) ¢ahisir.

= Sayisal devre karsiligi olarak, bir mantiksal yapiyr (dongii iizerinden)
cogaltir (érn: sirali XOR isleminin paralel tanimlanmasi).

= Bu atamayla iiretilen elemanlar birbirine benzer tiretilir ve itiretilecek
kopya adedince dongii degiskeni icin arahik ayarlanir. Bu dongi degiskeni,
dizi elemanlarimi indekslemek icin kullanilr.

= Etiket kullanimi zorunludur.

= For ifadesi ardisil islem olmasina Kkarsin, Generate ifadesi ile
kullanildiginda elemanlarin es zamanh (paralel) baglantilar1 yapilir.



8.11 For-Generate Atamasi

= For-Generate atamasi i¢in genel tanimlama asagidaki gorildiigi gibidir.
Tanimli oldugu aralik statik (generic veya sabit) belirtilmelidir.

Etiket: For parametre in baslangic deger to bitis deger generate
Eszamanli ifade(ler)...
End generate Etiket;

= Kullanim alani simirhdar.

= Cikis portuna dogrudan atama yapilamaz (vektorel c¢ikis 1¢in  bit
diizeyinde teker teker atama yapilabilir).

= Yine giris portundan dogrudan veri iizerinde islem yapamaz (vektorel
giris 1¢in bit diizeyinde teker teker okuma yapilabilir).



8.11 For-Generate Atamasi

* 8 bitlik girdide eslik bitini (girdideki ‘1’ lerin sayisi ¢ift ise 0, tek ise 1 degerini alan
bit — parity biti) saglayan VHDL kodunu For-Generate ifadesi iizerinden yazalim.

Say1=3, tektir,

I Girdi :—> 1/10l0/10]0(l0|11]1 parity bit=1
T }
1| xor |O| xor {O| xor |O| xor |O| xor |O| xor | 1| xor |1 = :(IE):aS:'lllt(yBll;li):
!
[—— - - - = 1
I Girdi '— | 1 0 0 0 0 0 1 1
Giris portuolsun | X o\ o\ LN R 1aN 10N o\
: < < < 0 < N < <
N T N P T N T N AN A
N R I F N
| _______ A
| cikti_vek |—> | 0 0 0 0 0 0 0 0 0

Tanimladigimiz

sinyal olsun \

cikti vek(i+1) <= cikti_vek(1) xor girdi(1);




8.11 For-Generate Atamasi

* 8 bitlik girdide eslik bitini (girdideki ‘1’ lerin sayisi ¢ift ise 0, tek ise 1 degerini alan
bit — parity biti) saglayan VHDL kodunu For-Generate ifadesi iizerinden yazalim.

Library iece;
Use ieee.std _logic 1164.all,

Entity eslik biti is

Generic (n: natural := 8);

Port (girdi : in std logic vector (n-1 downto 0);
es_cikis : out std logic);

End eslik_biti;

Architecture davranis of eslik biti is
Signal cikti_vek : std logic vector (n downto 0):= (others=>"0");
Begin

Eslik_biti: For i in 0 to n-I generate
cikti_vek(i+1) <= cikti_vek(1) xor girdi(1);
End generate Eslik_biti;

— cikti_vek(0) <= '0';
yazilirsa ilk deger
siirekli 1ojik-0 olur.

Sentezleme asamasi
garanti altina alinir.

es_cikis <= cikti_vek(n);

End davranis;




8.11 For-Generate Atamasi

* 8 bitlik girdide eslik bitini

Begin
(girdideki ‘1’ lerin sayisi cift <
. . = e e /'Eslik biti: For i in O to n-/ generate
ise 0, tek ise 1 degerini glan /7| cikti_vek(i+1) <= cikti_vek(i) xor girdi(i
bit — parity biti) saglayan J End generate Eslik_biti;

VHDL kodunu For-Generate ,/ %

Architecture davranis of eslik_biti is

Signal cikti_vek : std logic vector (n downto 0):= (others=>"'0");

girdi[7:0]

es_cikis <= cikti_vek(n);
ifadesi iizerinden yazalim. ,’
4 .
/’ End davranis;
’/
cikti vek(0) <= '0"; 1
yazilirsa ilk deger Bu érnekte derleyici, bu komut yazilmamasina
siirekli lojik-0 olur. S~k karsin sentezlemeyi dogru yapmis.
Sentezleme asamasi
garanti altina alinir.
——————— I
| Girdi | —— [ 1 0 0 0 0 0 1 1
Viado/ AP AW ) WP o N N DI O SR A
Elaborated Design Ciktisi B N A A N AN
(RTL Sematik Diyagram) Fal LY. | . i e P A NN
| cikti vek e 0 0 0 0 0 0 0 0 0
o Cikti_vek 1. cikti vel ; - )
°4”\>H) k>_ o 0 )Clk“_vgk_g_l o JKivek 4 cikti_vek_5_i L
| RTL_XOR L XOR Z%mms—\)xm - ) XZR 5 ::J ciktivek 6. : :? cikti_v;k_?_i
- RTL_XOR RTLXOR 1o Ciktivek 8 i
L7 1 es_cikis

RTL_XOR



8.12 If-Generate Atamasi

= Bir elemanin veya komponentin devreye eklenmesi bir kosula bagh oldugu
durumda kullanilir.

= Bu atama kapsaminda kosullu ifade icin dallanma olmaz (ardisil kontrol
mekanizmasi olarak isletilen Else veya Elsif kaliplar1 If sonras1 kullanilamaz).

= Es zamanh — Kosullu durum icin kullamilir ve port bilgilerine dair sart
kullanilamaz. Statik bir parametre uzerinden kosul saglamir (bu nedenle
nadir kullanilir). Kosul, sentezde bilinen (kesin) generic veya sabitler
lizerinden tanimlanabilir.

= [f-Generate atamasi i¢in genel tanimlama asagidaki gorildiigi gibidir.

Etiket: If (kosul) generate
Eszamanli ifade(ler)...
End generate Etiket;




8.12 If-Generate Atamasi

Ornek: Sifreleme amaciyla istenilen bir tasarimda, 6 veya iizeri cift sayilarda

tanimlanabilen (n bitlik) girdi port bilgisi i¢in;

1) Bilginin ilk yar1 boliimiiniin (n/2-1 downto 0), sabit bir anahtar olan ve giris bit
sayisinin yarisina gore tanimlanan, ilk iki degeri ‘0' ve diger degerleri ‘1' olan

anahtar 1simli sabit ile XOR islemine tabi tutulmasi,

2) Bilginin ikinci yar1 boliimiindeki en biiyiik indisli terim harici bilgilerin (n-2 downto

n/2) terslenmesi,
3) Bilginin en biiyiik indisli (n-1 indisli) verisinin oldugu gibi aktarilmasi

gerekmektedir. Elde edilen bilgi cikis isimli ¢ikis portuna yazilacaktir. Gerekli VHDL

kodunu For-Generate ve If-Generate ifadeleri lizerinden yaziniz.



8.12 If-Generate Atamasi

Girdi 8 bit iken;

1) Bilginin 1ilk yar1 boliimiiniin
(n/2-1 downto 0), sabit bir
anahtar olan ve giris bit sayisinin
yarisina gore tanmimlanan, ilk iki
degeri ‘0' ve diger degerleri ‘1'
olan anahtar isimli sabit ile XOR
islemine tabi tutulmasi,

2) Bilginin ikinci yari
boliimiindeki en blyiik indish
terim  harici  bilgilerin  (n-2
downto n/2) terslenmesi,

3) Bilginin en biiyiik indisli (n-1
indisli) verisinin oldugu gibi
aktarilmasi

e e e e e e e e e e e e e e e o — — —— —— —

. girdi '— [0]1[1]1J0oJof1]1
Adm3 | Adm2 |1 Admel |
0| 1/1]1] [o]of1]1
Tt
NN N
S &I
R
0foJo] [1]1]0]0J— ! Anahtar
N e e
[
P4+ o+ 4
11 1 1
|I—— - = = = a
- ckis | — [ o] o] o [FEFEENE




8.12 If-Generate Atamasi [ e i senck e

[lgnii ]~ [0[i[il3lo0lo[1l3]
: [Adm3 | Adm2 | Admel |
Gerekli VHDL kodunu For-Generate 'o [ATi[i] [ololai[1i]
e qe e
ve If-Generate ifadeleri iizerinden e e éé
[01070] [(1]11010]« | Anabtar

1111010 '
aziniz. - I T
y ey

]

Library ieee;
Use ieee.std logic 1164.all;

Entity sifrel is
Generic (n: natural ;= 8); -- tasarim i¢ yapisi geregi n ¢ift sayr olmah
Port (girdi : in std logic vector (n-1 downto 0);
cikis : out std logic vector (n-1 downto 0));
End sifrel;




8.12 If-Generate Atamasi

Architecture davranis of sifrel is

Constant anahtar: std logic vector (n/2-1 downto 0):= (0=>'0', 1=>'0", others =>'1");
Signal cikti vek : std logic vector (n-1 downto 0);

Begin

sifrele: For i in O to n-/ generate

first part: If (1 <n/2) generate -- n statik ve c¢ift say1 olmah
cikti_vek(i) <= anahtar(i) xor girdi(i);

End generate first part;

second_part: If (1>=n/2 and i<n-1) generate -- n statik ve cift say1 olmalh
cikti vek(i) <= not girdi(i);

End generate second_part;

third part: If (1 =n-1) generate -- n statik ve c¢ift say1 olmah
cikti_vek(1) <= girdi(1);

End generate third part;

End generate sifrele;

cikis <= cikti_vek;

End davranis;




8.12 If-Generate Atamasi

sifrele: For i in O to n-/ generate

first_part: If (i <n/2) generate
cikti_vek(i) <= anahtar(i) xor girdi(i);
End generate first_part;

second_part: If (i >=n/2 and i<n-1) generate
cikti_vek(i) <= not girdi(i);
End generate second_part; girdi[7:0] Y

Vivado /

Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

10

cikti_vekO i

third_part: If (i = n-1) generate
cikti vek(i) <= girdi(i);
End generate third_part;

End generate sifrele;

[] [1[1]1] [ofof1]1]
Tt 1
S
I
loJo]0] |1|1|0|0|<—>|Anahtar'

! !
| | | |
¢ + 3+ 3
1 1 1 1

" ckis | — [ 0] oo FUFNENEY oﬂﬂﬂl AE

RTL_XOR

cikti vek0 i 0

RTL_XOR

cikti vek0 i

O

1

o

RTL_INV

cikti vek0 i 2

O

:

RTL_INV

cikti vek0 i 3

O

o

RTL_INV

£ > cikis[7:0]



SONRAKI DERS KONUSU

9- ARDISIL DEVRE TASARIMI



ILERI SEYISAL SISTEMLER

9- ARDISIL DEVRE TASARIMI

Ders sorumlusu:

Do¢. Dr. Hasan KOYUNCU



9. ARDISIL DEVRE TASARIMI

= Kombinasyonel devrelerde hafiza birimleri bulunmadigindan elde edilen
cikislar siireklidir - kesintisizdir.

= Bu noktada elde edilen bir ¢iktinin hafizada tutulmasi gerekiyorsa veya
baska bir devreye verinin aktarilmasi gerekli ise Ardisil Devre Tasarimi
1sletilmektedir.

=VHDL dili kapsaminda ardisil devre tasarimi i¢in farkli ifade ve yapilar
bulunmaktadir.

= Bunlar temel olarak process, function, procedure, case, loop, for ve while
seklinde siralanabilir.



9. ARDISIL DEVRE TASARIMI

= Ardisil devre tasarimi senkron ve asenkron olarak iki tipte ger¢eklestirilir.

= Tasarim 1¢indeki bloklar aym clock tetigi ile aktif hale geliyorsa
gerceklenen tasarim senkron devre karakteristigindedir.

clk

Blok-1

Process (clk)

f
1

1
J

Blok-2

T

Process (clk)

i
X

1
s

Blok-3

T

Process (clk)

f
I8

1
s

Blok-4

T

Process (clk)

f
1

1
J

T

y

Hafiza-1

;

Hafiza-2

v

Hafiza-3

v

Senkron devre 6rnegi

Hafiza-4




9. ARDISIL DEVRE TASARIMI

= Tasarim 1¢indeki bloklar; baska bir blok islemine baghysa veya farkh
sinyal tetiklemeleri ile aktif hale geliyorlarsa gerceklenen tasarim

asenkron devre olarak bilinir.

clk

Blok-1

Process (clk)
{
veril <= .,

3

Blok-2

Blok-3

Process (clk)

f
1

veri2 <= .,

1
5

1NO)

Process (clk)

f
1

verild <= ...

1
5

?

?

Blok-4

veri3

0

Process (clk)

f
1

1
5

?

clk-2

Hafiza-1

Hafiza-2

veril
—P

Q)

Hafiza-3

Asenkron devre 6rnegi

v

Haftiza-4




9. ARDISIL DEVRE TASARIMI

= Hafiza biriminin bulundugu ardisil devre tasarimlarinda saat darbesi (clock
sinyali) kare dalga seklindedir ve bu sinyal ile iki tip tetikleme isletilir:

1-) Yiikselen kenar tetiklemeli ﬁ {}

2-) Diisen kenar tetiklemeli

Yiikselen Diisen

Kenar Kenar

=Kare dalgada lojik-0’dan lojik-1’e gecis yapildig1 kenar yiikselen, lojik-1’
den lojik-0’ a gecis yapildig1 kenar i1se diisen kenar olarak bilinir.

= Yiikselen ve diisen kenar tetiklemeleri de belirtilen bu durumlara gore
meydana gelir.

= Sayisal tasarimda clock sinyalleri process yapilarini ve hafiza birimlerini
aktive etmek 1¢in kullanilir,



9. ARDISIL DEVRE TASARIMI

= Saat darbesinin durumlarina dair asagidaki ornek tanimlamalar 1le VHDL

karsilik saglanir,

// yukselen kenar tetiklemeli islem
If rising_edge(clk) then

If clk'event and clk="1' then

/I dusen kenar tetiklemeli islem
If falling edge(clk) then

If clk'event and clk="0' then

9.1 D-Flip Flop ve Kaydediciler

= Sayisal elektronikte 1 bitlik veri siklikla D tipi FF icinde tutulur, clinki
calisma mantig1 basittir ve D-FF’ler tasarim kolaylig1 saglarlar.

= Bu nedenle sayisal tasarimda hafiza gereksinimleri sikhkla D-FF’ler

lizerinden saglanir.




9.1 D-Flip Flop ve Kaydediciler

= D-FF’lere dair dogruluk tablosu ve genel sema asagida goriildiigi gibidir.

Preset
D-FF dogruluk tablosu
Data— D Q — Output

clk —]> Q | Inversed Qw D Qe

Output 0 0 0

— 0 1 1

Clear 1 0 0

1 1 1

D-FF genel semasi

= Yukarida goriilen D-FF yapisina dair gerekli VHDL kodu yazalim.

= Bu noktada sistem cikisi; clock tetigi ile sistem giris durumuna, preset
girisi durumuna ve clear girisi durumuna gore elde edilmelidir.



9.1 D-Flip Flop ve
Kaydediciler

= Bu noktada sistem c¢ikasi;
clock tetigi ile sistem giris
durumuna, preset girisi
durumuna ve clear girisi
durumuna gore elde
edilmelidir.

Library ieee;
Use icee.std logic 1164.all;

Entity dtypeft is

Port (clk, d giris, birle, sifirla : in std logic;
q, q_not : out std_logic);

End dtypeff;

Architecture davranis of dtypeff is
Signal deg tut: std logic :='0";
Begin
Process (sifirla, birle, clk)
Begin
If sifirla ="1' then
deg tut <='0";
Elsif birle ='1' then
deg tut<='l";
Elsif clk'event and clk="1' then
deg tut <=d giris;
End if;
End process;
q <=deg tut;
q_not <= not deg_tut;
End davranis;




sifirla

clk

d_giris

birle

9.1 D-Flip Flop ve Kaydediciler

Vivado /

Elaborated Design Ciktisi
(RTL Sematik Diyagramai)

deg_tut_reg

CLR

PRE

= FPGA’deki temel D-FF yapilar1 genellikle
sadece Q iiretir. Q istenirse, sentez araci cikisa
otomatik olarak bir NOT kapisi ekler.

g_not

RTL_INV

Y
;

Y

RTL_REG_ASYNC



9.2 Process Yapisi

=Ardisil devre tasariminda sirah ifadelerin isletilmesi genclde process
ifadesi ile saglanir.

= Process ifadesi sonrasi1 parantez icine bu blogu tetikleyecek olan ifadeler
(duyarhilik listesi) yazilir.

= Ornegin; D-FF icin clear, preset ve clock bu liste i¢ine yazilabilir.

= S0z konusu liste icinde belirtilen sinyallerin degeri degistiginde (etkin
olduklarinda) process blogu tetiklenecektir.

= Etiket bashgi i1se opsiyonel olarak kullanilabilir.



9.2 Process Yap1s1 Etiket: Process (duyarlilik listesi)
variable [degisken tanimlama]

Begin
Basit sinyal atamalari
If-else kullanimi
Dongii (while, for, loop) kullanimi
Case kullanim1
End process;

= Etiket bashg1 ise opsiyonel
olarak kullanilabilir,

Ornek 9.1: Akim (A), gerilim (V) ve sicaklik (T) kontrolii yapilacak bir
elektronik kart icin, belirtilen parametrelerin kontrol girisi oldugu bir sistem
tasarlanacaktir.

Sistem kapsaminda kontrol birimi i¢in herhangi bir deger simir1 astiginda
ikaz-1, iki deger simir1 astiginda ikaz-2, her li¢ deger sinir1 astiginda ise
ikaz-3 cikisi etkin olacak, gerekli ii¢ cikis clock tetigi ile senkron clde
edilecektir.

Gerekli ¢ikislar1 dogruluk tablosu iizerinden elde ederek gerekli VHDL
kodunu yaziniz.



Dogruluk tablosu

9.2 Process Yapisi

A V T ikaz1l ikaz2 ikaz3
. , 0 0 0 0 0 0
Library iece; o o0 1 1 0 0
Use iece.std _logic 1164.all, 0 1 0 1 0 0
0 1 1 0 1 0
. . | 1 0 0 1 0 0
Entity kontrol birimi is 1 0 1 0 1 0
Port (A,V,T,clk : in std logic; 1 i ‘i’ g é ‘f
ikaz 1,kaz 2,kaz 3 : out std logic); .
End kontrol birimi; ikaz 1= AVT + AVT + AVT
Architecture davranis of kontrol birimi is - ‘E(V ©7) J:A vt _
Begin ikaz 2 =AVT + AVT + AVT
Process (clk) =T(4@V)+4VT
Begin tkaz 3= AVT

If rising_edge(clk) then
ikaz 1 <=((not A) and (V xor T)) or (A and (not V) and (not T));
ikaz 2 <= (T and (A xor V)) or (A and V and (not T));
ikaz 3 <=(A and V and T);
End if;
End process;
End davranis;




9.2 Process Yapisi

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

10 ikaz 12.i 0
A
L y © o _ikaz 11, 0
— < Re)
\ > RTL_AND 1
RTL_AND
ikaz_1
clk . ikaz_1_reg
= C
ikaz_12_i ikaz_11 i ikaz_10i ;
o Jxaz_le 10 = - 10 -10- Q —{ > ikazt
- 11 D—‘?O 11 © 11 © 0
T RTL_REG
RTL_XOR RTL_AND RTL_ OR a
ikaz_12_i_1 ikaz_2_reg
10 o)
>O _ _ o _ikaz 20 e
RTL_INV o _ikaz 21 0 o Q[ ka2
|1 N O I ) D
tkaz 221 0
g Az ecel RTL_OR
N O RTL_AND - RTL_REG
I J o _ikaz 30, _
RTL_AND ; 0 ikaz_3_reg
RTL_AND = C _
_ _ o _ikaz 21 5 e [ ka3
10 ikaz 22 i o)
" D} © I RTL_REG
RTL_AND

RTL_XOR



9.3 If-Else Yapisi

“Process yapisi i¢inde, belli kosul(lar)a gore tasarimi yonlendirmek igin
kullanilan sirah ifade komutlarindan birisidir.

= Karsilastirma yapisi olarak da atfedilir.
= If komutu ile en az bir sartin yazilmasi gerekir.

« [ki durum oldugunda If-Else ifadesi (Else = genel gerceklestirilmesi
gereken islem icin) veya If-Elsif 1fadesi kullanilir.

= [kiden fazla sart oldugunda If-Elsif-Elsif komutu kullanilabilmekte, If-
Elsif-Else yapis1 ise akisin saglanmasinda meydana gelebilecek hatalarin
onlenmesini saglamak amaciyla (Else = genel gerceklestirilmesi gereken
islem icin) 1sletilebilmektedir.



9.3 If-Else Yapisi

e If komutu ile en az bir sartin yazilmas: gerekir. Iki durum oldugunda If-Else
ifadesi (Else =2 genel gerceklestirilmesi gereken islem icin) veya If-Elsif ifadesi
kullanilir. Tkiden fazla sart oldugunda If-Elsif-Elsif komutu kullanilabilmekte,
If-Elsif-Else yapis1 ise akisin saglanmasinda meydana gelebilecek hatalarin
onlenmesini saglamak amaciyla (Else = genel gerceklestirilmesi gereken islem
icin) isletilebilmektedir.

If ve tiirevlerinin kullanim ornekleri

If If-Else If-Elsif If-Elsif-Elsif If-Elsif-Else
If kosul 1 then If kosul 1 then
[fade(ler)... [fade(ler)...
If kosul 1 then | Ifkosul 1 then Elsif kosul 2 then | Elsif kosul 2 then
If kosul 1 then [fade(ler)... [fade(ler)... [fade(ler) [fade(ler)
[fade(ler)... Else Elsif kosul 2 then | Elsif kosul 3 then | Elsif kosul 3 then
End [fade(ler)... [fade(ler) [fade(ler)... [fade(ler)...
End End Elsif kosul 4 then | Else
Ifade(ler)... [fade(ler)...
End End




9.3 If-Else Yapisi

Ornek 9.2: Bir arabanin motor,
emniyet kemeri ve kapi durumlar
sensorler lizerinden analiz edilerek ikaz
devreye alinacaktir. Sirasiyla motor,
emniyet ve kapi giris portlarindan
sensor bilgilert alinmaktadir.

Motor c¢alisiyor (lojik-1) ise emniyet
kemerinin takilmamis (lojik-0) veya
kapilardan birisi a¢ik (lojik-0) olmasi
durumunda ikaz devreye girecektir.

Opsiyonel olarak sistemde ariza
gelebilecegl  dusiiniilerek  resetleme
1slem1 de tasarima eklenecektir. Gerekli
VHDL kodunu yaziniz.

ikaz <= motor and ((not (emniyet)) or
(not (kapi)));

Library ieee;
Use iece.std logic 1164.all;

Entity kontrol birimi is

Port (motor, emniyet, kapi, clk, rst : in std logic;

ikaz : out std logic);
End kontrol birimi;

Architecture davranis of kontrol birimi is
Begin
Process (clk, rst)
Begin
If (rst="1") then
ikaz <="0";
Elsif rising_edge(clk) then
If (motor ="'1") then
If (emniyet ='0' or kapi ='0") then
tkaz <="1";
Else
ikaz <="'0";
End if;
Else
ikaz <="0";
End if;
End if;
End process;
End davranis;




9.3 If-Else Yapisi

Vivado /

Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

emniyet

ikaz1_i
0
RTL_EQ
ikaz1.i 0 lo _ikazO_i
~\ o 11 )
RTL OR
RTL_EQ

S=1'b1

If (rst="1") then
ikaz <="0";

Elsif rising_edge(clk) then

If (motor ='1") then

If (emniyet ='0' or kapi ='0") then

tkaz <="1";
Else
ikaz <="0";
End if;
Else
ikaz <="0";
End if;
End if;

ikaz i

10

S =default

11

RTL_MUX

ikaz_reg

= C

D

CLR

Q 4D ikaz

RTL_REG_ASYNC



9.4 Case Yapisi

= Case yapisi sirali ifadelerden birisi olup, kontrol devrelerinde ve durum
makinelerinde siklikla kullanilir.

= [f-Else ifadesinin yerine de kullanilan bu yapi, bir degisken veya sinyalin
alabilecegi degerlere gore saglanacak alternatif islem seciminde kullanilir.

= Case yazim sekli asagida goriildiigi gibidir.

Case degisken veya sinyal is
When deger 1 |deger 2 |deger 3 => -- birden fazla deger
ifadeler
When deger 4 to deger 6 => -- deger aralig1
ifadeler
When deger 7 => -- tek bir deger
ifadeler
When Others =>
ifadeler
End Case;




9.4 Case Yapisi

Ornek  9.3:  Sekilde
gorilen 4:1 c¢oklayici
icin  gerekli  VHDL
kodunu Case ifadesi
lizerinden yaziniz.

Girisl —\
Giris2 — M f
GiIris3 — X

Giris4 — /

Secim

Library ieee;
Use ieee.std logic 1164.all,;

Entity colkayici 4el is

Port (girisl, giris2, giris3, giris4 : in std _logic;
secim : in std_logic vector (1 downto 0);
f: out std _logic);

End colkayici 4el;

Architecture davranis of colkayici 4el is
Begin
Process (secim, giris1, giris2, giris3, giris4)
Begin
Case secim is
When "00" => f <= giris|;
When "01" => f <= giris2;
When "10" => { <= giris3;
When "11" => f <= giris4;
End case;
End process;
End davranis;




9.4 Case Yapisi

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagramai)

Process (secim, giris1, giris2, giris3, giris4)
Begin
Case secim is
When "00" => f <= giris|;
When "01" => f <= giris2;
When "10" => f <= giris3;
When "11" => f <= giris4;
End case;
End process;

fi

Giris] ——
Giris2 — M
U

Girisd ——
Se¢im

giris’ } \
S=2'b00 10
N S=2'b01 11
giris2
o
S=2'b10 12
giris3 }
S=2'b11 13
L N\ RTL_MUX
girisd S[1:0]

secim[1:0]




9.4 Case Yapisi

Ornek 9.4: Uretim bandinda 4 farkli genislikte kavanozun capi fotoseller
vasitasiyla olciilecektir.

= Kiiciik kavanoz 1 fotoseli, orta kavanoz 2 fotoseli, biiyiik kavanoz 3
fotoseli ve ekstra biiyiik kavanoz 4 fotoseli kesecek sekilde sistem tasarimi
saglanmustir.

= Bantta kavanoz yokken fotosel bilgisi "0000" olarak gelmektedir ve bu
durumda ¢ikisa kavanoz yok bilgisi iletilmelidir.

= Diger durumlar ise iiretim hatasi olarak ¢ikisa aktarilacaktir.

= Sistem ¢ikisinda kavanoz c¢ap biyiikliikleri ve diger durumlar ikili
tabanda ifade edilecek sekilde gerekli VHDL kodunu Case ifadesi
lizerinden yaziniz.



9.4 Case Yapisi

Durum / Giris Ikili Karsihk
Kavanoz yok 000
Kiigiik kavanoz 001 i . .
Orta kavanoz 010 Seklinde ifade edelim.
Biiyiik kavanoz 011
Extra bliyilik kavanoz 100
Uretim Hatas1 101

Library ieee;
Use ieee.std logic 1164.all;

Entity kav kontrol is

Port (clk, rst : in std logic;
fotosel : in std logic vector (3 downto 0);
cikis : out std logic vector (2 downto 0));

End kav_kontrol; @




9.4 Case
Yapisi

Architecture davranis of kav_kontrol is

Begin
Process (clk, rst) .
Begin Durum / Giris Ikili Karsihk
If (rst="1") then Kavanoz yok 000
YN 7 Kii¢iik kavanoz 001
cikis <= "000"; Orta kavanoz 010
Elsif rising_edge (clk) then Biiyiik kavanoz 011
Case fotosel is Extra biiyiik kavanoz 100
When x"0" => Uretim Hatasi 101
cikis <="000"; -- kavanoz yok
When X"l" | X"2" | XH4H | X"8" :>
cikis <="001"; -- kiiclik kavanoz
When X"3" | X"6H | XHC" :>
cikis <="010"; -- orta kavanoz
When XH7" | X"EH :>
cikis <="011"; -- buyiik kavanoz
When x"F" =>
cikis <="100"; -- extra bliyliik kavanoz
When others =>
cikis <="101"; -- liretim hatasi
End case;
End if;
End process;
End davranis;




9.4 Case Yapisi

Durum / Giris ikili Karsihk
Kavanoz yok 000
Kiic¢iik kavanoz 001
Orta kavanoz 010
Biiyiik kavanoz 011
Extra biyiik kavanoz 100
Uretim Hatas1 101

= Derleyici, 4 bitlik fotoset girdisini
ve buna gore gerekli 6 farkh cikti

Case fotosel is
When x"(0" =>

cikis <="000";
When XHlH | XH2" | XH4" | X"8” :>
cikis <="001";

-- kavanoz yok

-- kii¢iik kavanoz

: : When x"3" | <"6" | <"C" =>
cikis <="010";

-- orta kavanoz

When x"7" | x"E" =>
-- bliytik kavanoz

cikis <="011";

When x"F" =>

cikis <="100";

When others =>

cikis <="101";
uretimini  ROM  yapis1 temelli End case;
modelledi.
rst >
dk N\ cikis_reg[_Z:O]
CLR
cikis_i = C
Q
D
fotosel[3:0] D— A3:0] 0[2:0] _I
RTL_ROM

-- extra biiylik kavanoz

-- liretim hatasi

Vivado /

Elaborated Design Ciktisi
(RTL Sematik Diyagramai)

RTL_REG_ASYNC

) cikis[2:0]




9.5 For Yapisi

= I¢ boliimiinde tanimli kodlar1 belirli bir sayida (iterasyon sayisinca) ¢alistirir.

» Icinde bildirilen parametre icin; tamimh arahgin baslangic degerini
parametreye aktaran, bu degeri her dongiide 1 artiran ve bitis degerinde
dongiiyti sonlandiran yapidir.

= Aralikta belirtilen baslangic ve bitis degerleri farkina +1 eklendiginde
iterasyon sayisi tespit edilir.

= Tanimlamada etiket bashig1 opsiyonel olarak kullanilabilir.

Etiket: For parametre in baslangic_deger to bitis_deger loop
Ifade(ler)...
End loop;




9.5 For Yapis:

Ornek 9.5: 32 bitlik bir sayida kac adet lojik-1 oldugunu tespit etmek icin
gerekli VHDL kodunu For 1fadesi lizerinden yaziniz.

Tasarim-1

Library ieee;

Entity birler1_say is
Generic (n: natural := 32);
Port (clk, rst : in std logic;
girdi : in std logic vector (n-1 downto 0);
cikti : out std logic vector (5 downto 0)); -- en fazla 32 olabilir
End birler1_say;

N



9.5 For YaPlSl @ Tasarim-1

Architecture davranis of birler1_say is
Begin
Process (clk, rst)
variable sayma: integer range 0 fo n;

Begin
If (rst="1") then
sayma := 0;

cikti <= (others=>'0");
Elsif rising_edge (clk) then
sayma := (;
For iin 0O to n-1 loop
If girdi(1) ='l' then
sayma := sayma + 1;
End if;

. . cikti <= conv_std logic vector (sayma, c1kt1'length), :
Endit JoF i Ihvaci Hacarnm Kl iy i\
End process;
End davranis;




9.5 For Yapis:

Tasarim-1

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

girdif31:0] —f _ sayma_i_0 sayrna_i_1 sayma |_2
B " saymaﬂ_\ q Sedefaut 11 s=1e1_ 10[2:0] =11 10[3:0] g=1p1  10[4:0]
. o\ ono S-m 10[10] S-etaun_1[10] S detaut 1[2:0] S-deizat_ 11[3.0]
RTL_ADD
st
ck [
sayma_i_ 26 saymal_i_ 27 sayma_i_27 sayma0_i_28 sayma_i_28 sayma0_i_29
s=1w1  10[5:0] 0O[5:0] s=1w1  10[5:0] Q0[5:0] co1m1  10[50]

cikti_reg[5:0]

sodetsurt 11[5:0]
RTL_ADD RTL_ADD

Szdefait 1[50] S=defaut|1[5:0]

sayma_i_29
| s=1p1  10[50]

S=defsut  11[50]

cikti[s:0]




9.5 For Yapis:

Ornek 9.5: 32 bitlik bir sayida kac adet lojik-1 oldugunu tespit etmek icin
gerekli VHDL kodunu For 1fadesi lizerinden yaziniz.

Tasarim-2

Library ieee;
Use icee.std logic 1164.all;

Use ieee.numeric std.all; i

Entity birler1_say is
Generic (n: natural := 32);
Port (clk, rst : in std logic;
girdi : in std_logic vector (n-1 downto 0);
cikti : out std_logic vector (5 downto 0)); -- en fazla 32 olabilir
End birleri_say;

N



9.5 For YaPlSl @ Tasarim-2

Architecture davranis of birler1 say is
Begin
Process (clk, rst)
variable sayma: integer range O 7o n;

Begin
If (rst="1") then
sayma := (;

cikti <= (others=>'0");
Elsif rising_edge (clk) then
sayma := 0;
For 1in 0 to n-1 loop
If girdi(1) ='1' then
sayma := sayma + 1;
End if;
End loop;

. ciktt <= std logic vector (to unsigned(sayma, cikti'length));i
EWd i S e | hroc: Hacam FIYWTIRIFCIT
End process;
End davranis;




9.5 For Yapisi

Tasarim-2

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

s B sayma_i saymal_i_0 sayma_i_0 1 saymal_i_1 sayma_i__1 saymal_i_2 sayma_i_2
o 10 saymal_i 0 Sedefait 11 ojz0] s=tpt 10[20] 10[20] ER] S=tut 10[30) oEal felcEy] s=1pi 10[40] e
T /?\0[1‘3] s—ym 10[10] et s s e
RTL_ADD
RTL_ADD T | RTL_MUX T | RTL_MUX TR
2 S :

st [
ck [

- cikti_reg[5:0]

° . sayma_i__29
RTL_ADD w

S=detait [1[5:0]

cikti[5:0]

RTL_REG_ASYMC




9.6 While Yapisi

= Sartli dongii yapisindadir.

= While komutu Oniinde yazili durumlar saglandigi miiddetce dongii devam
eder ve blok 1¢1 1slemler iteratif saglanir.

= Sart saglanmadig1 durumda dongl sonlandirilir.

While sart loop

[fade(ler)...
End loop:;

Ornek 9.5: 32 bitlik bir sayida kag adet lojik-1 oldugunu tespit etmek igin gerekli
VHDL kodunu While ifadesi tizerinden yaziniz.




9.6 While Yapis:

Ornek 9.5: 32 bitlik bir sayida
ka¢ adet lojik-1 oldugunu
tespit etmek icin  gerekli
VHDL kodunu While ifadesi
lizerinden yaziniz.

—

for déngiisii (Tasarim-2)
orneginin while ile
gerceklenmesi

Tasarim-1 ve Tasarim-2’'deki
ayni RTL Sematik Diyagrami
elde edilir.

Library ieee;
Use icee.std logic 1164.all,
Use ieee.numeric_std.all,

Entity birleri_say is
Generic (n: natural := 32);
Port (clk, rst : in std_logic;
girdi : in std _logic vector (n-1 downto 0);
cikti : out std_logic vector (5 downto 0)); -- en fazla 32 olabilir
End birleri_say;

Architecture davranis of birleri_say is
Begin
Process (clk, rst)
variable sayma, i: integer range 0 fo n;

Begin
If (rst="1") then
sayma = 0;
1:=0;

cikti <= (others=>'0");
Elsif rising_edge (clk) then
sayma := 0;
1:=0;
While (i<n) loop
If girdi(i) ='1' then
sayma := sayma + I;
End if;
1:=1+1;
End loop;
cikti <= std logic_vector (to_unsigned(sayma, cikti'length));
End if;
End process;
End davranis;




9.6 While Yapisi

Ornek 9.6: 8 bitlik girdide eslik bitini (girdideki ‘1’ lerin sayis1 cift ise 0,
tek ise 1 degerini alan bit) saglayan VHDL kodunu While ifadesi tizerinden
yaziniz.

Tasarim-1
(Eslik Biti)

Library iece;
Use iece.std logic 1164.all;

Entity eslik biti is

Generic (n: natural := 8);

Port (clk, rst : in std logic;
girdi : in std logic vector (n-1 downto 0);
es_cikis : out std logic);

End eslik biti;




(Eslik Biti)

9.6 While Yapisi @ T ’

Architecture davranis of eslik biti is

Begin
Process (clk, rst)
variable deg tut: std logic;
variable 1: integer range 0 7o n;

Begin
If (rst="1") then
deg tut :='0";
1:=0;

es_cikis <='0";
Elsif rising_edge (clk) then

deg tut :='0";

1:=0;

While (1 <n) loop
deg tut :=deg tut xor girdi(i);
1:=1+1;

End loop;

es_cikis <= deg tut;

End if;

End process;
End davranis;




(]
9.6 While Yap1s1 PP o Tasarim-1
rchitecture davranis of eslik biti is ] ..
Begin (Eslik Biti)
Process (clk, rst)
se . g i variable deg_tut: std logic;
Ornek 9.6: 8 bitlik glrdlde variable i: integer range 0 /0 n;
. e 0 o ° ° ° 619 Begin
eslik bitini (girdideki ‘1 B (rst="1" then
lerin sayis1 cift ise 0, tek ise sieg_otut =10
L4 3 [ 3 b 1 := ;
1 degerini alan bit) saglayan > es_cikis <=0’
. . . Elsif rising_edge (clk) then
VHDL kodunu While ifadesi deg tut =0
tzerinden yaziniz. Ll
While (i <n) loop
deg_tut :=deg_tut xor girdi(i);
1:=1+1;
End loop;
es_cikis <= deg_tut;
. End if;
Vivado / End process;
Elaborated Design Ciktisi End davranis;
(RTL Sematik Diyagramai)
es_cikisb_i S
e D_::)? " H; S_c>_lk|‘s’5_l 10 :Ze”ikis“ es_cikis3 i es._cikis2._i es_cikis1 _i
FLOR RTLXOR — RTL_XOR - _— ¢ ° es_cikis0_i
RTL_XOR RTL_XOR RTL_XOR 10 o
< RTL_XOR
rst [
‘ es_cikis_reg
dk [ C ol [ escikis

D

RTL_REG_ASYNC



9.1 Loop Yapisi

= Diger dongii yapilarinda dongii sonlandirma i¢in ka¢ kez tekrar edilecegi
bilgisi sunulur.

= Ancak Loop dongisiinde sonlandirma i¢in yalnizca gerekli kosul (Exit
ifadesinden sonra) bildirilir.

= Kontrollii loop dongusiiniin tanimi asagidaki gibidir:

Etiket: loop

[fade(ler)...

Exit Etiket When Kosul;
End loop Etiket;




9.1 Loop Yapisi

Ornek 9.5: 32 bitlik bir sayida
ka¢ adet lojik-1 oldugunu tespit
etmek 1i¢in gerekli VHDL
kodunu Loop ifadesi lizerinden

yaziniz.

for déngiisii (Tasarim-2)
oérneginin loop ile
gerceklenmesi

Tasarim-1 ve Tasarim-2’deki
ayni RTL Sematik Diyagrami
elde edilir.

Library ieee;
Use ieee.std logic 1164.all;
Use ieee.numeric_std.all;

Entity birleri_say is
Generic (n: natural := 32);
Port (clk, rst : in std logic;
girdi : in std_logic_vector (n-1 downto 0);
cikti : out std_logic vector (5 downto 0)); -- en fazla 32 olabilir
End birleri_say;

Architecture davranis of birleri_say is
Begin
Process (clk, rst)
variable sayma, i: integer range 0 fo n;

Begin
If (rst="1") then
sayma := 0;
1:=0;

cikti <= (others=>'0");
Elsif rising_edge (clk) then

sayma = 0;
1:=0;
dongu: loop

If girdi(i) ='1' then
sayma := sayma + 1;
End if;
1:=1+1;
Exit dongu When 1 = n; -- veya Exit dongu When 1 > n-1;
End loop dongu;
cikti <= std logic vector (to_unsigned(sayma, cikti'length));
End if;
End process;
End davranis;




9.1 Loop Yapisi

Ornek 9.7: Ornek 9.6’ daki eslik biti devre tasarimi icin gerekli VHDL
kodununun architecture boliimiinii Loop ifadesi lizerinden yaziniz.

Tasarim-2
(Eslik Biti)

Library ieee;
Use ieee.std logic 1164.all;

Entity eslik _biti is

Generic (n: natural := 8);

Port (clk, rst : in std logic;
girdi : in std logic vector (n-1 downto 0);
es_cikis : out std logic);

End eslik biti;




9.1 Loop Yapisi

Architecture davranis of eslik biti is
Begin
Process (clk, rst)
variable deg tut: std logic;
variable i: integer range 0 fo n;

Begin
If (rst="1") then
deg tut :='0";
1:=0;

es_cikis <="'0";
Elsif rising_edge (clk) then
deg tut:="'0";
1:=0;
dongu: loop
deg tut :=deg tut xor girdi(1);
1:=1+1;

End loop dongu;
es_cikis <= deg_tut;
End if;
End process;
End davranis;

Tasarim-2
(Eslik Biti)

Exit dongu When 1 = n; -- veya Exit dongu When 1> n-1;




9.1 Loop Yapisi

Architecture davranis of eslik_biti is Tasarim-2
Begi . "
2 (Eslik Biti)

Process (clk, rst)

. . cqe ol variable deg_tut: std logic;
Ornek 9.6: 8 bitlik glfdlde variable i: integer range 0 to n;
. o 0 . ° ° . I4 9 Begin
esllok bitini . (g¥l‘dldekl .1 T fen
lerin sayisi cift ise 0, tek ise deg_tut :='0;
- ° ° ° - 1 = 0,
1 degerini alan bit) saglayan es_cikis <=0
VHDL kodunu Loop ifadesi B, g eceo () then
] eg tut:='0";
lizerinden yaziniz. i=0;

dongu: loop
deg tut :=deg_tut xor girdi(i);

1:=1+1;
Exit dongu When i = n; -- veya Exit dongu When i1 > n-1;
) End loop dongu;
Vivado / es_cikis <= deg_tut;
Elaborated Design Ciktisi End if;
. . End process;
(RTL Sematik Diyagramz) End davranis;

0 10 es_cikis6_i

irdi[7:0 I >_ ikis5 i
gll’dl[?. 1 o] o 5. ¢ | Kisd i
— RTL_XOR 2 ! :?gﬁ CS)_ImeS‘Cikiéa—i 10 es_cikis2_i 10 es_cikis1_i
3
. RTL XOR PR D—,@—,»—_w” 0
X RTL_XOR

RTL_XOR RTL_XOR RTL_XOR

10 es_cikis0_i
s}

L7 I

RTL_XOR

rst [ >

‘ es_cikis_reg
CLR

o
ck [ QpF———[> escikis

D

RTL_REG_ASYNC

Tasarim-1 (Eslik Biti) ve Tasarim-2 (Eslik Biti) RTL sematik diyagramlari aynidir.




9.8 Alt Programlar

= Alt programlar, ana program igerisinde belirli gorevleri yerine getirmek
icin tasarlanmis algoritmalar iceren VHDL yapilaridir.

= Komplike tasarimlarda onemli kolaylik saglayan iki farkli alt program
bulunur: Fonksiyonlar ve Prosediirler.

= Fonksiyonlar ¢oklu girise (parametrelere) gore belirli bir tipte tekil deger
dondiiren yapilardir.

= Prosediirler ise coklu girise gore coklu cikis tuiretmeyi saglarlar, deger
dondiirmezler.



9.8.1 Fonksiyonlar

= Belirli bir tipte tekil deger dondiiren alt programdir.

= Iginde degisken ve sabit tanimlanabilmesine ragmen, sinyal tanimlamasi
gerceklestirilmez.

= RAM ve ROM gibi birimlerde, benzer islemlerin defalarca yapilmasinda
islevsellik saglar (adres ¢oziimleme, veri doniistiirme, vb gibi).

= Fonksiyonlar bir deger dondiirdiigiinden, prosediirlerden farkli olarak
return komutu igerir.

Function fonksiyon 1smi (giris 1, giris 2, ..., giris_n : tir) return tir is
Sabit veya degisken tanimlamalari

Begin
Ifade(ler)...

End fonksiyon ismi;




9.8.1 Fonksiyonlar

= Fonksiyon tanimlamasi, architecture icinde kullanilmasi halinde begin
kelimesinden once yapilmalidir.

= Girisindeki parametreler sinyal olabilmektedir, ancak islem yapilacagi
zaman onceden de belirtildigi gibi degisken veya sabitler uzerinden
gorevler saglanmahdir.

= Fonksiyon i1simlendirmesi yapilirken genelde “f” harfi sonrasi1 farkl
ifadelerin yazilmasi tercih edilir.

Ornek 9.8: Komplike bir tasarim icinde (4 + B)C lojik ifadesinin siirekli
isletilmesi gerekiyor. Buna gore A,B ve C’ye karsilik giris1, giris2 ve giris3
sinyaller1 sistem girisi olacagi durumda gerekli VHDL kodunu yaziniz.




9.8.1 Fonksiyonlar

Ornek 9.8: Komplike bir
tasarim i¢inde (4 + B)C
lojik  ifadesinin  stirekli
isletilmesi gerekiyor. Buna
gore A,B ve C’ye karsilik
girisl, giris2 ve giris3
sinyaller1 ~ sistem  girisi
olacag1t durumda gerekli
VHDL kodunu yaziniz.

Library iece;
Use icee.std logic 1164.all;

Entity lojik islem is

Port (girisl, giris2, giris3 : in std logic;
cikti : out std logic);

End lojik islem;

Architecture davranis of lojik islem is
Function f3islem (A, B, C : std logic)
return std logic is
variable ara deg: std logic;
Begin
ara deg := ((not A) or B) and C;
return ara deg;
End f3islem;
Begin
cikti <= f3islem(girisl1, giris2, giris3);
End davranis;




9.8.2 Prosediirler

= Herhangi bir deger dondiirmeyen, yapisinda tanimh girislere gore devreyi
isleterek sonucu yine yapisinda tammmh ¢ikis deger(ler)ine aktaran alt
programdir.

= Prosediiriin tammimlama yeri, fonksiyon tanimlamalarinda da oldugu gibi
architecture ifadesinden sonra begin komutundan once olmalidir.

= Prosediir 1simlendirmesi yapilirken genelde “p” harfi sonrasi farkh
ifadelerin yazilmasi tercih edilir.

= Fonksiyondan farkli olarak girdi sinyalleri iizerinde direk islem
yapabilir, ama icinde sinyal tammmlamasi1 yapilamaz (prosediir ve
process’lerde de ayni1 kural gecerlidir).



9.8.2 Prosediirler

= Procedure i1fadesi sonrasi, parantez igerisinde girdiler ve gerekli ¢ikti(lar)
belirtilir.

= Burada fonksiyonlarda oldugu gibi siralamanin dikkatli sekilde yapilmasi
gerekir.

Procedure prosedur ismi (nesne_tipi girisler: in ziir;
nesne_tipi cikislar: out #ir) is
Sabit veya degisken tanimlamalari
Begin
[fade(ler)...
End prosedur ismi;




9.8.2 Prosediirler

Ornek 9.9: Ornek 9.8’ de
lojik ifadeyi prosediir
icinde tanimlayarak
gerekli VHDL kodunu

yazmlz. @

Komplike bir tasarim
icinde (A + B)C lojik
ifadesinin stirekli
isletilmesi gerekiyor.
Buna gore A,B ve C’ ye
karsilik giris1, giris2 ve
giris3 sinyalleri sistem
girisi olacagi durumda
gereklit VHDL kodunu
yaziniz.

Library ieee;
Use icee.std logic 1164.all;

Entity lojik islem is

Port (giris1, giris2, giris3 : in std_logic;
cikti : out std logic);

End lojik islem;

Architecture davranis of lojik islem is
Procedure p3islem (signal A, B, C : in std logic;
signal elde : out std logic) is
Begin
elde <= ((not A) or B) and C;
End p3islem;
Begin
p3islem(girisl, giris2, giris3, cikti);
End davranis;




SONRAKI DERS KONUSU

10- ORNEK UYGULAMALAR



ILERI SEYISAL SISTEMLER

0- ORNEK UYGULAMALAR

Ders sorumlusu:

Do¢. Dr. Hasan KOYUNCU



10. ORNEK UYGULAMALAR

Ornek 10.1: 8°li LED devresinde sol ve sag butonlarin durumuna gore saga
ve sola kaydirma islemi saglayan VHDL kodunu yazimiz. (Not: En sagdaki
led ile baslangi¢ yapalim)

Library ieee;
Use ieee.std logic 1164.all,
Use ieee.numeric std.all,

Entity led uyg is
Port (clk, rst, sol, sag : in std logic;
cikti : out std logic vector (7 downto 0));

End led uyg;




10. ORNEK
UYGULAMALAR

derleyicinin integer islemler
icin dogrudan 32 bitlik islem
yapmasin (gereksiz devre
yogunlugunu) engeller.

Ornek 10.1: 8’li LED devresinde sol
ve sag butonlarmin durumuna gore
saga ve sola kaydirma islemi
saglayan VHDL kodunu yaziniz.

(Not: En sagdaki led ile baslangic
yapalim)

-- Aralik belirtmek, e S0

Architecture davranis of led uyg is
signal dizi : std logic vector (7 downto 0) :=x"01";
~ +»signal sayma : integer range 0 to 7 := 0;
Begin
Process (clk, rst)
Begin
If rst="1"' then

Elsif rising_edge(clk) then
If sol ='1"' and sag="0' then
If sayma = 7 then
sayma <= (;
Else
sayma <= sayma + 1;
End if;
dizi <= (others =>"'0");
dizi(sayma) <="1";
cikti <= dizi;
Elsif sol='0' and sag ="'1' then
If sayma = O then
sayma <=7,
Else
sayma <= sayma - 1;
End if;
dizi <= (others =>"'0");
dizi(sayma) <="1";
cikti <= dizi;
End if;
End if;
End process;

End davranis;




10. ORNEK UYGULAMALAR

Ornek 10.1: 8’li LED devresinde
sol ve sag butonlarinin durumuna
gore saga ve sola kaydirma islemi
saglayan VHDL kodunu yaziniz.

(Not: En sagdaki led ile baslangi¢
yapalim)

Elaborated Design Ciktis1
(RTL Sematik Diyagrami)

Vivado /

ssssss

T | RTLMUX

sayma_req[20]
an

dizi0_i

o7

RTL_REG_ASYNC

i 1
20 )_|
1)
seam 0o - s 0 oo
RTLADD Sedenss_I1(20] o _1E0) - €
| — la o
sza] RTLMux < RTL_MUX o
|
i
. ai

DATA[7:0]
5 2ﬁ|)RTLEMERGE

] =T RTL MUK

l cikti_reg[70]

R

—— ki

o
ons
| RTL_REG_ASYNC



10. ORNEK
UYGULAMALAR

derleyicinin integer islemler
icin dogrudan 32 bitlik islem
yapmasin (gereksiz devre
yogunlugunu) engeller.

-- Aralik belirtmek, e S0

Ek Onemli Bilgi:
Gri arkaplanli bélim yalnizca
belirtilen yere yazilirsa,

- sol='0‘ and sag='0‘ ile
- sol=‘1* and sag="1"

durumlarinda da ¢alismaya
devam eder ve gereksiz gii¢
kaybina (gereksiz yiiklemeye)
sebebiyet verebilir.

Architecture davranis of led uyg is
signal dizi : std logic vector (7 downto 0) :=x"01";
~ +»signal sayma : integer range 0 to 7 := 0;

Begin
Process (clk, rst)
Begin
If rst="1" then

sayma <= 0;
dizi <= (others =>"0");
dizi(0) <="1";
cikti <= dizi;
Elsif rising_edge(clk) then
If sol ='1"' and sag="0' then
If sayma = 7 then
sayma <= (;
Else
sayma <= sayma + 1;
End if;
dizi <= (others =>"'0");
dizi(sayma) <="1";
cikti <= dizi;
Elsif sol='0' and sag ='1' then
If sayma = 0 then
sayma <=7,
Else
sayma <= sayma - 1;
End if;
dizi <= (others =>"'0");
o dizi(sayma) <="1";
‘e, cikti <= dizi;
‘24 End if;
End if;
End process;

End davranis;




10. ORNEK UYGULAMALAR

Ornek 10.2: 4 bitlik giris portu ile 0-F aras1 sayilar1 aygit {izerindeki ilk 7-
segmentte gortintiileyen kodlamay1 yapiniz.

Tasarim-1 a
Library icee; —
Use iece.std _logic_1164.all,; f | ‘ b
Entity seven seg is —

Port (clk, rst : in std logic;
girdi : in std logic vector (3 downto 0);
secim : out std logic vector (7 downto (); — e
cikti : out std logic vector (7 downto 0)); .

End seven_seg; Bfigigk;r;mr:
Il pabcdelg

(p—2 aktif etmek 1cin
lojik-1 olmali)




10. ORNEK UYGULAMALAR

Tasarim-1

Architecture davranis of seven_seg is
signal Icd bcd : std logic vector (3 downto 0) := (others =>'0");
signal Icd out : std logic vector (7 downto 0) :="10000001";

Begin
Process (Icd bced)

Begin
Case lcd_bced is -- say1 pabcedefg seklinde yazilir
when "0000" =>lcd _out <="10000001"; -- “0”
when "0001" =>lcd out<="11001111"; -- “1”
when "0010" =>lcd out <="10010010"; -- “2”

when "0011" => lcd_out <= "10000110"; -- «“3”
when "0100" =>lcd_out <="11001100"; -- “4”
when "0101" =>lcd out <="10100100"; -- <5~
when "0110" =>lcd _out <= "10100000"; -- “6”
when "0111" =>1lcd out <="10001111"; -- <7~

when "1000" => lcd_out <= "10000000"; -- “8”
when "1001" => lcd_out <="10000100"; -- “9”
when "1010" => lcd_out <= "10000010"; -- “a”
when "1011" => lcd_out <="11100000"; -- “b”
when "1100" => lcd_out <="10110001"; -- “C”
when "1101" => lcd_out <="11000010"; -- “d”
when "1110" =>lcd_out <="10110000"; -- “E”
when "1111" =>lcd out <="10111000"; -- “F”
when others => lcd_out <= "10000001"; -- “0”
End case;
End process;




Process (clk, rst)

10. ORNEK UYGULAMALAR
Begin

@ Tasarim-1
If rst="1"' then

secim <="111111 10"; -- 7-segment display’lerden en sagdaki aktif
lcd bed <= (others=>'0");
cikti <= x"81";

Elsif rising_edge(clk) then
secim <="111111 10"; -- 7-segment display’lerden en sagdaki aktif
led bed <= girdi;
cikti <=lcd out;

End if;

End process;
End davranis;




10. ORNEK UYGULAMALAR

— Ornek 10.2: 4 bitlik giris portu 1le 0-F arasi sayilari
f | ‘ b aygit uzerindeki 1lk 7-segmentte  goriintiileyen
g kodlamay1 yapiniz.
3 3 Tasarim-1
Vivado /
A Elaborated Design Ciktis1
d (RTL Sematik Diyagramz)
nfc
cikti_reg[7:0]
rst D lcd_out_i . CCLR
dk I: | CUI:d_bc_(_:l__reg[S:O] A3 ora 5 » Q D cikti[7:0]
- C Q RTL_ROM
girdi[3:0] D— D RTL_REG_ASYNC
p—
RTL_REG_ASYNC T
n/c
secim_reg[7:0]
CLR
>DC Q D secim[7:0]
PRE
RTL_REG_ASYNC




10. ORNEK UYGULAMALAR

Ornek 10.2: 4 bitlik giris portu ile 0-F aras1 sayilar1 aygit {izerindeki ilk 7-
segmentte gortintiileyen kodlamay1 yapiniz.

Tasarim-2 —
Library icee;
Use ieee.std logic 1164.all,; / | 3 ‘ “
Entity seven seg is
Port (clk, rst : in std logic; € ‘ ‘ ¢
girdi : in std logic vector (3 downto 0);

secim : out std logic vector (7 downto 0); d
cikti : out std logic vector (7 downto 0));

Bilgi aktarumi:
End seven_seg; 2i aktaruni:

pabedefg

(p—2 aktif etmek 1cin
lojik-1 olmali)




10. ORNEK UYGULAMALAR

Tasarim-2

Architecture davranis of seven seg is
signal Icd out : std logic vector (7 downto Q) :="10000001";

Begin
secim <="11111110";
With girdi select

lcd out <="10000001" when "0000", -- “0”
"11001111" when "0001", -- “1”
"10010010" when "0010", -- “2”
"10000110" when "0011", -- “3”
"11001100" when "0100", -- “4”
"10100100" when "0101", -- “5”
"10100000" when "0110", -- “6”
"10001111" when "O111", -- *“7”
"10000000" when "1000", -- “8”
"10000100" when "1001", -- “9”
"10000010" when "1010", -- “a”
"11100000" when "1011", -- “b”
"10110001" when "1100", -- “C”

"11000010" when "1101", -- *“d”
"10110000" when "1110", -- “E”
"10111000" when "1111", -- “F”

"10000001" when Others; -- “0”




10. ORNEK UYGULAMALAR

U

Process (clk, rst)

Begin
If rst="1" then
cikti <=x"81";

Elsif rising edge(clk) then
cikti1 <= Icd out;
End if;
End process;
End davranis;

Tasarim-2




10. ORNEK UYGULAMALAR

a
4 | " ‘ ¢ Ornek 10.2: 4 bitlik giris portu ile 0-F arasi sayilari
—_— aygit uzerindeki 1ilk 7-segmentte  goriintiileyen
5 | ‘ y kodlamay1 yapiniz.
Tasarim-2
d Vivado /
Bilgi aktarun: Elaborated Design Ciktisi
pabedefg RTL Sematik Diyagrami
(p—2 aktif etmek 1cin ( S yed )
lojik-1 olmali)
n/c S secim[7:0]
clk > e ] )
cikti_reg[7:0] ne
CLR ] —
led_out i
> C
Q cikti[7:0]
girdi[3:0] > A[3:0] o[7:0] D )
PRE
RTL_ROM
RTL_REG_ASYNC
RN

rst




10. ORNEK UYGULAMALAR

Ornek 10.3: 4 bitlik bilgiyi sifreyelerek karsiya ileten bir kodlama devresi

tasarlanacaktir. Tasarimda;

1) 4 bitlik temel bilgi alinarak 1° e timlenecek ve elde edilen bilgi temel bilgi

soluna eklenecek,

2) 8 bitlik ver1 saga 1 bit dondiirtilecek (ror komutu olmadan),

3) Adim-2’ de elde edilen bilgi 11000011 anahtar1 ile XOR islemine tabi

tutulacak.

Gerekli VHDL kodunu yaziniz. .
g‘

*

Geleneksel Diger Sifreleme Tiirleri (bkz.):

- Blok Sifreleme
- Seri Sifreleme
- RCS Sifreleme vb gibi.

' Ek Bilgi:
- Hem sifrelemede hem de ¢oézimlemede
ayn1 anahtar varsa simetrik sifreleme,

- Her iki durum ic¢in farkli anahtar
kullanilacaksa asimetrik gsifreleme s0z
konusudur.




10. ORNEK UYGULAMALAR @

Library ieee;
Use iece.std logic 1164.all;

Entity sifreleme is
Port (clk : in std logic;
girdi : in std _logic vector (3 downto 0);
cikti : out std logic vector (7 downto 0));
End sifreleme;

Architecture davranis of sifreleme is
Begin
Process (clk)
variable deger: std logic vector (7 downto 0);

Begin
If rising_edge (clk) then
deger := not girdi & girdi;
deger := deger(0) & deger(7 downto 1);
cikti <= deger xor anahtar;
End if;
End process;
End davranis;

Tasarim-1

constant anahtar: std logic vector (7 downto 0) :="11000011";




10. ORNEK UYGULAMALAR

Tasarim-1

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

Architecture davranis of sifreleme is
Begin
Process (clk)
variable deger: std logic vector (7 downto 0);
constant anahtar: std logic vector (7 downto 0) :="11000011";
Begin
If rising_edge (clk) then
deger := not girdi & girdi;
deger := deger(0) & deger(7 downto 1);
cikti <= deger xor anahtar;
End if;
End process;
End davranis;

cikti_reg[7:0]
ck > = C
Q [ cikiifz.0]
cikti1 i T D
girdi[3:0] [ 03:0] SIERY) o7:0) . CIKtO.i
o[7:0] —
RTL_INV [ V=B"11000011"  11[7:0] ) RTL_REG
RTL XOR




10. ORNEK UYGULAMALAR

Library iece;

Use ieee.numeric_std.all,;

ror komutu Entity sifreleme is
kullansaydik |:> Port (clk : in std logic;

End sifreleme;

End if;
End process;
End davranis;

Tasarim-2

Use ieee.std logic 1164.all;

nasil yazardik? girdi : in std logic vector (3 downto 0);

cikti : out std logic vector (7 downto 0));

Architecture davranis of sifreleme is

deger := unsigned(not girdi & girdi);
deger := deger ror 1;
cikti <= std logic vector(deger xor anahtar);

Begin
Process (clk)
variable deger: unsigned (7 downto 0);
Tasarim-l'deki aym constant anahtar: unsigned (7 downto 0) :="11000011";
RTL Sematik D.1}ragram1 Begin
elde edilir. If rising_edge (clk) then




10. ORNEK UYGULAMALAR

Ornek 10.4: 4 bitlik bilgi tizerinden saat (clk) sinyali temelli firekans béliicii
devre tasarimi gerceklestirilecektir. Buna gore;

= rst giris portu aktif oldugunda frekans boliicii devre cikislarina lojik-0 bilgisi
aktarilacaktir. (4 bitlik oldugu i¢in ¢ikislar /2, /4, /8, /16 islemlerini yapar)

= clk giris portunun yiikselen kenarinda sayma degeri bir artirilarak, 4 bitlik
sayicl degisimi gergeklestirilecektir. Bu dort bitlik bilginin herbir hanesi /2, /4, /8,
/16 1slemlerine karsilik 1lgili ¢ikis portlarina aktarilacaktir.

= Sayma i1slemine bagimli analiz ve devre tasarimi yapildigindan, sayic1 4 bitlik
maksimum durum sonrasi stfirlanmalidir.

Gerekli VHDL kodunu yaziniz.



10. ORNEK
UYGULAMALAR

Tasarim-1

=

Library ieee;
Use iece.std logic 1164.all;
Use ieece.numeric_std.all;

Entity freq div is
Port (clk, rst : in std logic;

sigclk 2, sigclk 4, sigelk 8, sigelk 16 : out std logic);
End freq div;

Architecture davranis of freq div is
Signal sayac vek : std logic vector(3 downto 0) := (others =>"'0");
Begin

sigclk 2 <=sayac vek (0); -- £/2
sigclk 4 <=sayac vek (1); -- /4
sigclk 8 <=sayac vek (2); -- {/8
sigclk 16 <=sayac vek (3); -- /16

Process(clk, rst)
Begin
If rst="1" then
sayac_vek <= (others =>"0");
Elsif rising_edge(clk) then
sayac vek <=std logic_vector(unsigned(sayac vek) + 1);
End if;
End process;
End davranis;




10. ORNEK
UYCULAMALAR

Tasarim-1

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

Architecture davranis of freq div is

Signal sayac vek : std logic vector(3 downto 0) := (others =>'0");

Begin

sigclk 2 <=sayac vek (0); -- /2
sigclk 4 <=sayac vek (1); -- {/4
sigclk 8 <=sayac vek (2); -- {/8
sigclk 16 <= sayac_vek (3); -- f/16

Process(clk, rst)
Begin
If rst="1" then
sayac_vek <= (others =>'0");
Elsif rising_edge(clk) then

sayac_vek <= std logic_vector(unsigned(sayac_vek) + 1);

End if;
End process;
End davranis;

rst >
" . sayac_vek_reg[3:0]
c B
CLR M
T > C
Q
plusOp_i 2
11
( .\ 0[3:0] I
10[3:0] \_/ RTL_REG_ASYNC
RTL_ADD

\ 4

VEVRVRY

sigclk_2

sigclk_4

sigclk_8

sigclk_16



10. ORNEK UYGULAMALAR

Tasarim-1

Vivado /
Simulation Ciktisi

Architecture davranis of freq_div is
Signal sayac vek : std_logic_vector(3 downto 0) := (others =>"'0");
Begin

sigclk 2 <=sayac_vek (0); -- f/2
sigclk 4 <=sayac vek (1); -- /4
sigclk 8 <=sayac vek (2); -- {/8
sigclk 16 <=sayac vek (3); -- f/16

Process(clk, rst)
Begin
If rst="1' then
sayac vek <= (others =>"'0");
Elsif rising_edge(clk) then
sayac vek <=std logic vector(unsigned(sayac vek) + 1);
End if;
End process;
End davranis;

0.007 ns

Name Value
o clk
o rst
@ sigclk_2
o sigclk 4

o sigclk 8

e sigclk_16

= CLK_PERICD




10. ORNEK
UYGULAMALAR

Tasarim-2

=

Glitch (Atlama)
durumunu énlemeye
yonelik tasarim

Library iecee,
Use ieee.std logic _1164.all;
Use ieee.numeric_std.all;

Entity freq div is
Port (clk, rst : in std logic;

sigclk 2, sigclk 4, sigelk 8, sigclk 16 : out std logic);
End freq div;

Architecture davranis of freq div is
Signal sayac vek : std logic vector(3 downto 0) := (others =>"0");
Begin
Process(clk, rst)
Begin
If rst="1' then
sayac_vek <= (others =>"'0");

sigclk 2 <="'0";
sigclk 4 <="0";
sigclk 8 <='0";

sigclk 16 <="'0";

Elsif rising_edge(clk) then
sayac vek <=std logic vector(unsigned(sayac vek) + 1);
sigclk 2 <=sayac vek (0); -- f/2
sigclk 4 <=sayac vek (1); -- f/4
sigclk 8 <=sayac vek (2); -- f/8
sigclk 16 <=sayac vek (3); -- f/16

End if;

End process;
End davranis;




10. ORNEK

UYGULAMALAR

Tasarim-2

Architecture davranis of freq_div is
Signal sayac_vek : std _logic vector(3 downto 0) := (others =>"'0");
Begin
Process(clk, rst)
Begin
If rst="1' then
sayac_vek <= (others =>"'0');
sigelk 2 <="'0";
sigclk_4 <="'0";
sigelk 8 <='0";
sigelk 16 <='0";
Elsif rising_edge(clk) then
sayac_vek <=std_logic_vector(unsigned(sayac_vek) + 1);
sigclk 2 <=sayac_vek (0); -- /2
sigclk 4 <=sayac vek (1); -- f/4
sigclk_8 <=sayac_vek (2); -- f/8
sigclk 16 <=sayac_vek (3); -- f/16
End if;
End process;
End davranis;

sigclk_2_reg

= C
D

CLR
Q

RTL_REG_ASYNC

sigclk_4_reg

= C

D

Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

sayac_vek_reg[3:0]
CLR [
lusOp i ~ C Q
usOp i
P P P_ D
0[3:0]
10[3:0] * pe— ]
RTL ADD RTL_REG_ASYNC
Vivado /

CLR
Q

RTL_REG_ASYNC

sigclk_8_reg

= C

D

CLR
Q

RTL_REG_ASYNC

sigclk_16_reg

= C

b D

CLR
Q

RTL_ REG_ASYNC

sigclk_2

sigclk_4

sigclk_8

sigclk_16



10. ORNEK UYGULAMALAR

Architecture davranis of freq_div is
Signal sayac vek : std logic vector(3 downto 0) := (others =>"'0");
Begin
Process(clk, rst)
Begin
Tasarim-2 If rst="1" then
sayac vek <= (others =>'0");
sigclk 2 <="0";
sigclk 4 <='0";
sigclk 8 <="0';
sigclk 16 <="'0";
Elsif rising_edge(clk) then
sayac_vek <=std logic vector(unsigned(sayac vek) + 1);
sigclk 2 <=sayac vek (0); -- f/2
sigclk 4 <=sayac vek (1); -- f/4
sigclk 8 <=sayac vek (2); -- /8

. sigclk 16 <=sayac_vek (3); -- f/16
. V1v.ado / End if:
Simulation Ciktis1 End process;

End davranis;

0.006 ns

Mame

o clk

o sigclk_2

o sigclk_4

o sigclk_8

o sigclk_16
¢ CLK_PERIOD

10000 p=




SONRAKI DERS KONUSU

11- HAFIZR ISLEMLERI



ILERI SEYISAL SISTEMLER

11- HAFIZR ISLEMLERI

Ders sorumlusu:

Do¢. Dr. Hasan KOYUNCU



11. HAFIZA ISLEMLERI

= Hafiza birimleri; gelen veriyi tutmak, yine bu veriyi isletmek (baska
birimlere aktarmak) amaciyla sayisal tasarimlarda siklikla kullanilan
yapilardir.

= Bu noktada birgok sayisal sistem, veri tutma ve isleme opsiyonlar:
diistiniilerek tasarlanar.

= Hafiza islemlerinde 1-bitlik veri en yalin halde FF’ler iizerinde
tutulmaktadir.

= Hafiza birimleri i1se FF birimleri lizerinden blok yapilar olusturularak elde
edilir.

= ROM, PROM, EPROM, RAM vb. hafiza linitelerinin en temel ortak paydasi
adres yolu ve veri yolu kavramlaridar.



11. HAFIZA ISLEMLERI

= Adres yolu bit sayis1 / Adres bit sayis1 (n), ka¢c farkh verinin (2" adet)
tutulabilecegini gostertir.

= Ver1 yolu bit sayisi / Veri bit sayis1 (m) ise kac¢ bitlik bilgiler tizerinde
islem yapilacagim nitelemektedir.

Adres Veri
0 0000 | 10010110 -
2'xm ROM/RAM
1 0001 | 11111111 28 ROM/RAM
2 0010 | 00001111 16x8 ROM/RAM

n=adres yolu (bit sayisi)
m=veri uzunlugu (bit sayisi)
Adres<3:0> Veri<7:0>

15 | 1111 | 00001000

Bir hafiza birimindeki adres yolu ve veri yolu (uzunlugu) temel gosterimi



11.1 ROM (Okunabilir) Hafiza

= ROM birimi yalnizca okuma yapilabilen hafiza yapisidir.

= Uretim esnasinda doldurulan ve kolaylikla degistirilemeyen bir yap1
icermektedir. VHDL iizerinden ROM blok semasi1 asagida goriildiigi gibidir.

0 m-bit veri

" 1 m-bit veri

C —> : :
. P m-bit veri cikis

VHDL ile 2™ X m ROM

izin — | —> .
icin hafiza semasi

adres —p| -

2°_1 | m-bit veri




11.1 ROM (Okunabilir) Hafiza

= Buna gore; her “clk” tetiginde “izin” girisi (kontrol edilir) lojik-1 ise
“adres” bilgis1 okunarak, gerekli adresteki m-bitlik veri sistem c¢ikisina
aktarilir.

= Aktarilan bu bilgi tasarim i¢1 bir boliimde kullanilabilir veya genel bir
sistem cikis1 olarak atfedilebilir.

m-bit veri
1 m-bit veri
clk —» _ _
2 m-bit veri || cikis
1zIn ——) ) VHI?L ile 2™ X m ROM
' icin hafiza semasi
adres —»| -

21_1 | m-bit veri




11.1 ROM (Okunabilir) Hafiza

= Sabit bilgilerin isletilmesi gerektigi bir¢ok uygulamada ROM yapilari
kullanilir.

= Miihendislikte karsilasilan bir¢ok yapida sabit bilgi isletilmesi gerekir.

= Ornegin; alt ve iist sinir degerleri sabit olan 8 farkli parametreye dair sinir
bilgisinin saklanmasi1 ve iletilmesi.

0 m-bit veri

I | m-bit veri

clk —» : .
P m-bit veri cikis

VHDL ile 2™ X m ROM
icin hafiza semasi

izin —| B

adres —| -

281 | m-bit veri




11.1 ROM (Okunabilir) Hafiza

Ornek  11.1: 8 adet
parametrenin alt ve list sinir
degerler1 sekilde goriildiigii
gibidir. Buna gore alt ve iist
degerler 8’er bit ¢ctkti olmak
lizere, bu sinir degerleri 16
bit formda saklayan ve izin
girisine gore gerekli
adresteki bilgiyi alt ve ust
isimli c¢ikis portlarina clk
tetigi ile aktaran sayisal
devre 1¢in gerekli VHDL
kodunu yaziniz.

Not: izin girisi lojik-0 iken
veya rst girisi aktif iken, alt
ve ust isimli ¢ikis portlarina
gerekli bit sayisi  kadar
yiiksek empedans atamasi
yapilacaktir.

Parametreler

Parl

Par2

Par3

Par4

Par5

Par6

Par7/

I

Par8

Parametre
Araliklan

R

ikili Karsiliklar

0000 0100 — 0000 1100

0000 0010 - 0001 0110

0000 0000 — 0000 1111

1000 0010 —-1001 0110

0000 0001 - 0010 1000

0000 0100 - 0100 1000

0000 1010-0010 0011

0001 0110- 0101 0101




11.1 ROM (Okunabilir) Hafiza

‘ Tasarim-1

Library iece;

Use icee.std logic 1164.all;
Use icee.std logic arith.all;
Use icee.std logic unsigned.all,;

Entity Uyg rom is
Port (clk, rst, 1zin: in std logic;
adres: in std _logic vector(2 downto 0);
alt, ust: out std_logic vector(7 downto 0));
End Uyg rom;




11.1 ROM
(Okunabilir)

Hafiza

=

Architecture davranis of Uyg rom is
type bellek tipi is array (0 7o 7) of std logic vector(15 downto 0);
constant rom_birimi: bellek tipi :=(
0 =>"0000010000001100",
1 =>"0000001000010110",
2 =>"0000000000001111",
3=>"1000001010010110",
4 =>"0000000100101000",
5=>"0000010001001000",
6 =>"0000101000100011",
7=>"0001011001010101");
Begin
Process (clk,rst)
Begin
If (rst="1") then
alt <= (others=>'2");
ust <= (others=>'Z");
Elsif rising_edge(clk) then
If izin="1" then
alt <= rom_birimi(conv_integer(adres))(15 downto 8);
ust <=rom_birimi(conv_integer(adres))(7 downto 0);
Else
alt <= (others=>'Z");
ust <= (others=>'Z");
End if;
End if;
End process;
End davranis;




11.1 ROM

(Okunabilir)

Hafiza

rst | >

Vivado /

Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

clk

izin

|_\
adres[2:0] D— Al2:0]
|_\

D alt[7:0]

alt_reg[7:0]
CLR
» = C
Q
rom_birimi[0]_i P D W W
@] o
O[15:0] |
U RTL REG_ASYNC
S
RTL_ROM
ust_reg[7:0]
CLR
> C
Q
7:0
> D W
@]

H PRE

()
—

=

RTL_REG_ASYNC

_) ust[7:0]



11.1 ROM (Okunabilir) Hafiza

Daha sade nasil yazariz?

Architecture davranis of Uyg rom is
type bellek tip1is array (0 7o 7) of sitd logic vector(15 downto 0);
constant rom_birimi: bellek tipi .= (

0 =>"0000 0100 0000 1100", ————— » x"040C"
1 =>"0000 0010 0001 0110", ————— » x"0216"
2 =>"0000 0000 0000 1111", ————— » x"000F"
3=>"1000 0010 1001 0110", ————— > x"8296"
4 =>"0000 0001 0010 1000", — — — — — » x"0128"
5=>"0000 0100 0100 1000", ——— —— > x"0448"
6 =>"0000 1010 0010 0011", — —— —— » x"0A23"
7=>"0001 01100101 0101"); — —— — — » x"1655"
Begin

Hexadecimal format ile




11.1 ROM
(Okunabilir)
Hafiza

Tasarim-2

>

Onceki 6rnekteki
Library ve
Entity bolimleri
ayni kaldu.

Yine ayni RTL
semasi elde
edilir.

Architecture davranis of Uyg rom is
type bellek tipiis array (0 7o 7) of std logic vector(15 downto 0);
constant rom_birimi: bellek tipi .= (0 =>x"040C", 1 =>x"0216",
2 => x"000F", 3 => x"8296", 4 => x"0128", 5 => x"0448", 6 =>
x"0A23", 7=>x"1655");
Begin
Process (clk,rst)
Begin
If (rst="1") then
alt <= (others=>'Z");
ust <= (others=>'Z");
Elsif rising_edge(clk) then
If izin="1" then
alt <=rom birimi(conv_integer(adres))(15 downto 8);
ust <=rom_birimi(conv_integer(adres))(7 downto 0);
Else
alt <= (others=>'Z");
ust <= (others=>'7);
End if;
End if;
End process;
End davranis;




11.1 ROM (Okunabilir) Hafiza

‘ ‘ Tasarim-3
Library ieee;

Use iece.std logic 1164.all,;
Use icee.numeric std.all,

Entity Uyg rom is
Port (clk, rst, 1zin: in std logic;
adres: in std logic vector(2 downto 0);
alt, ust: out std logic vector(7 downto 0));
End Uyg rom;




11.1 ROM
(Okunabilir)
Hafiza

Tasarim-3

=

Architecture davranis of Uyg rom is
type bellek tipi is array (0 7o 7) of std logic vector(15 downto 0);
constant rom_birimi: bellek tipi := (0 =>x"040C", 1 =>x"0216",2 =>
x"000F", 3 => x"8296", 4 => x"0128", 5 => x"0448", 6 => x"0A23",
7=>x"1655");
Begin
Process (clk,rst)
Begin
If (rst="1") then
alt <= (others=>'Z");
ust <= (others=>'7");
Elsif rising_edge(clk) then
If izin="1" then
alt<=rom_birimi(to_integer(unsigned(adres)))(15 downto 8);
ust <=rom_birimi(to_integer(unsigned(adres)))(7 downto 0);
Else
alt <= (others=>'Z");
ust <= (others=>'7'");
End if;
End if;
End process;
End davranis;




11.1 ROM (Okunabilir) Hafiza

Tasarim-1 ve Tasarim-2’deki

Tasarim-3

RTL semasinin aynisi elde edildi.

rst | >

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

clk >

adres[2:0] D—

izin

RTL_REG_ASYNC

alt_reg[7:0]
CLR
» > C
Q
rom_birimi[0]_i p D W
@] o
A[2:0] O[15:.0] | I
_‘_li
c
RTL_ ROM
ust_reg[7:0]
CLR
> C
Q
7:0
> D
o £

D alt[7:0]

9]

n/

RTL_REG_ASYNC

D ust[7:0]



11.2 RAM (Rasgele Erisimli) Hafiza

= RAM birimi, hem okuma hem de yazma yapilabilen hafiza yapisidir.

= Igerisinde bilgi saklama hiicreleri ile bu hiicrelere veri aktarmak veya
bu hiicrelerden verileri okumak amaciyla tasarlanmis devrelerden olusur.

= Temel olarak bir hafiza ve okuma / yazma secimi saglayan kontrol
devresi RAM yapisini teskil eder.

= Bilgiy1 gecici olarak depolamaktadir.

= Acilimindaki rasgele erisim ifadesi ise sira gozetmeksizin istenilen adreste
okuma / yazma yapabilmesinden kaynakldur.



11.2 RAM (Rasgele Erisimli) Hafiza

= VHDL iizerinden RAM blok semas1 asagida goriildiigii gibidir.

= Yapiya dair blok semada goruldiigi iizere her “clk” tetiginde “izin” girisi
lojik-1 1se “adres” ve “yaz_oku” bilgileri okunmaktadir.

clk > 0 m-bit veri
o 1 m-bit veri
1ZIn —P 2

m-bit veri cikis
adres — | —>

VHDL dilinde RAM
hafiza semasi

yaz oku —p -

giris — .2[1_1

m-bit veri




11.2 RAM (Rasgele Erisimli) Hafiza

= Bu bilgilere gore gerekli adresteki m-bitlik veri okunabilmekte (sistem
cikisina aktarilmakta)

= veya sistem girdisi gerekli adresteki m-bitlik veri yerine aktarilmaktadir
(yazilmaktadir).

clk > 0 m-bit veri
o 1 m-bit veri
1ZIn —P 2

m-bit veri cikis
adres — | —>

VHDL dilinde RAM
hafiza semasi

yaz oku —p -

giris —p yn_1

m-bit veri




11.2 RAM (Rasgele Erisimli) Hafiza

Ornek 11.2: 8 adet 4 bitlik verilerin bulunacagi (23x4) RAM blogu
tasarlanacaktir.

- rst 1s1ml1 giris portu aktif oldugunda biitiin RAM hafizasi sifirlanacaktir.

- ¢lk 1simli giris port sinyalinin yiikselen kenarinda izin girisi kontrol
edilecek;

* lojik-0 1se cikis 1simli ¢ikis portuna gerekli bit sayisi kadar yiiksek
empedans atamasi yapilacaktir.

* lojik-1 1se yaz oku girdisine gore yazma veya okuma islemi
gerceklestirilecektir.

- Okuma 1¢in gerekli adresteki bilgiyi cikis 1simli ¢ikis portuna, yazma igin
i1se giris_dat isimli giris portundaki veriy1 gerekli adrese yazan devre i¢in
gerekli VHDL kodunu yaziniz.

(Not: yaz_oku portunda giris ‘0’ 1se okuma, ‘1’ ise yazma islemi yapilacaktir)



11.2 RAM (Rasgele Erisimli) Hafiza

clk —p
Tasarim-1 @ rst ——p
1ZIn ——p

4-bit veri

4-bit veri

4-bit veri

Library ieee; adres —»
Use ieee.std logic 1164.all; yaz_oku —p| |

Use iece.std logic arith.all; giris

4-bit veri

cikis

Use ieee.std logic unsigned.all;

Entity Uyg ram is

Port (clk, rst, 1zin, yaz oku: in std logic;
adres: in std logic vector(2 downto 0);
giris dat: in std logic vector(3 downto 0);
cikis: out std logic vector(3 downto 0));

End Uyg ram;




11.2 RAM
(Rasgele
Erisimli)
Hafiza

Tasarim-1

=

Architecture davranis of Uyg ram is
type bellek tipiis array (0 zo 7) of std logic vector(3 downto 0);
signal ram_birimi: bellek tipi;
Begin
Process (clk, rst)
Begin
If (rst="1") then
ram_birimi <= (others=> (others=>"'0") );
Elsif rising_edge(clk) then
If 1zin="0' then
cikis <= (others=>'7');
Elsif (izin="1") then
If yaz_oku ="0' then
cikis <= ram birimi(conv_integer(adres));
Elsif yaz oku ="'1' then
ram_birimi(conv_integer(adres)) <= giris dat;
End if;
End if;
End if;
End process;
End davranis;




11.2 RAM

Rasgele Erisimli) Hafiza

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagramai)

ciosi_0
1n "'\-] . =]
n = ] 5
1
T L wa
s T AL b
[}
o -
! sl _resgy] O[3:40) e
% | FOL W Lo
E g
mm_birirnald] ':r:'un"rrm a o
e irimi_regi] 0 \‘jc o H“ RIL_PEG AGYNC
1
adms(20] O Ay @
FTL ALK
H sy IlEsi]]
ATLRGM 3 | ALK L =
[=
ez bisimi 1] 'n':'u:l mal1Li 0 o @
= _Biremi_regl1] [} \-\-"]-:: m \-\\h]u o
n
ARdy @ - 1 RTL ik FTL_REG_ASYNC
ATLRGM s | AL
¥ s _regy] 2][3:40]
sam_rinaiZ] aTua_:-l]Z] g LELR
— RTL_hALDx H FTL_hALIK - [ITET
HILRGH : AL REG ASTHC =
samy_rirnal[3] e biriméf). .0 [EETT §
cmy_biriri_recf] " 1 \"N-..]G man_wrim_reg| 3][3:40] = [<TET
=d \‘]G I L A0 als_peg [3:0]
¥ = 1 < 1550
- FTL ALK EE g 1650 =
RTL RORA 5 RIL ML * B [T L— e g A
o
=T aE
= FTL REG AYHC s | T
KIL_RE:
x s _regy] £]]3:40]
szl aTu kim0 r_c_uu
s regt] - \-\-h]c i x]ﬂ e g
n
- HTL WK .
FTL_hALIX ]
S : AL REG ASTHC
. rm_brmals] i 0
e, birimi <] 1 wm_wimi_reg] SI[3:4]
mm_birimil_reg|s] 10 "\_\_]c 5 a T
1 ¢
Hama o] R & oq
ATLRGM 3 | ALK )
i) im0 RITL REG_ASY NC
mm_birimil_regjé] 0 "\_\_]G :': a
n
oo % | FOL_ W sm_biriemi_resg| 6|24
ATLRGM % | RTL WAL e
- [
e [ o
gs datac] > RIL_REG ASTHC
a0 O
rm_irima_reg|[7]
ri &
i mm_rrmi[7] b7 i 0 IGT biriem_reg| 0]
A @ " . " \__]G =T
ATL ROM 1 1 B a
st
L RITL putL 0 =1 HTL wai °
yaz_aku [




11.2 RAM (Rasgele Erisimli) Hafiza

clk —p

Tasarim-2 rst ]
1zZIn ——

4-bit veri

4-bit veri

4-bit veri

adres —p|
Library ieee; yaz_oku — |
Use icee.std logic 1164.all; giris —

4-bit veri

cikis

Use ieece.numeric std.all;

Entity Uyg ram is

Port (clk, rst, 1zin, yaz oku: in std logic;
adres: in std logic vector(2 downto 0);
girts dat: in std logic vector(3 downto 0);
cikis: out std logic vector(3 downto 0));

End Uyg ram;




11.2 RAM
(Rasgele
Erisimli)
Hafiza

Tasarim-2

=

Architecture davranis of Uyg ram is
type bellek tipiis array (0 to 7) of std logic vector(3 downto 0);
signal ram_birimi: bellek tipi;
Begin
Process (clk, rst)
Begin
If (rst="1") then
ram_birimi <= (others=> (others=>"'0") );
Elsif rising_edge(clk) then
If 1zin="0' then
cikis <= (others=>'7);
Elsif (izin="1") then
If yaz_oku ="'0' then
cikis <=ram_birimi(to integer(unsigned(adres)));
Elsif yaz oku ="l"' then
ram_birimi(to_integer(unsigned(adres))) <= giris_dat;
End if;
End if;
End if;
End process;
End davranis;




11.2 RAM (Rasgele Erisimli

Hafiza

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagramai)

ik 10
] . o]
I \jh 1 “
I
f‘)m BALIK
en 1 v
[
g
= s karieri_reg| (340 =
5| FTL_BALK L
g
rmy il aTu :!_'\:_:1 a -
mm_birim o
regfl :‘: L\‘] o it RTL_REG, Ay HC
admes(20] O LIFE p—
AL ARG G | FTL WAL N sarmy firirmi_reg| 111340
L
ram_ ka1 0 -
samy_brimil 1] . \_\_h] [
mamy_arim 1 ]
reg|l] :I\IJ “"N-\.] o " o o
e ATL BALK o | P _MALX FTL_REG_ASY WC
RTLRCH )
S cn birirafZ] i 0 :n'r i _reg| 2[3:0)
i) N \-\_‘] 1 ‘H\\-] R L
[} " e g
Ay G n B bl i 1
FITL_BAL e
TED o | RTL WAL ] |10
RTL_REG ASYNC e
smy_bsrimi[ 3] -:r:'u:lrrr PLLf sy _bsori_resg| 3 [2:40] I:s& LIET
mm_birimi_reg[E] :.\: "‘\_\_] R - [ _| L :::: s _sey [310]
2 a
— RTL_ ML 5| FTLMAL e [ET 3
RTLROM L o [EET e - als]30]
o
Qe
AL A AT HC gaiy | FIL ML
L _RES
. = brmald] L 0 o birieri_peg| 420
mmy_brimal] " \_\_-] e
sm_bwimi_regld] :nll \-\\H‘]c T [:] o @
o =17 R °
RTLRGH o | FIL MK e
L
am_bermal5L i 0
e, barmifs] L] s rm_resg| 5](340]
. bl reght] L L\"'] g I = cin
o & i c
RTL_BALDE CE g
ATLROA o | LA - B
raem_ birimil] “Tu""m a RITL_REG_ASY NC
mm_irim )
ceah o a0 E
A2y @ A =T R b srms_brmi_resg| G][%40]
RTLRG s e 5 c
o @ a Tasarim-1’'deki
(=3 o
gz D o e RTL semasinin
zn [ =m_birimi_reg[7] sarmy_sarimi_resg| 7][%:40]
wa o e i w70 aynisi elde
n n [=
RTLRCM i Z ||‘-\\\-1L ¢ g edj]di
rst
i T <1 L N -
yaz ok [




SONRAKI DERS KONUSU

12- SONLU DURUM MAKINELERI



ILERI SEYISAL SISTEMLER

12- SONLU DURUM MAKINELERI

Ders sorumlusu:

Do¢. Dr. Hasan KOYUNCU



12. SONLU DURUM MAKINELERI

= Sonlu durum makinesi (SDM); sonlu (simirh) sayida durumdan, durumlar
arasi gecislerden ve eylemlerden meydana gelen otomatik sistem modelidir.

= Durum makineleri, VHDL kapsaminda genel olarak ardisil sistem
davranislarint modellemek i¢in kullanilir.

= SDM tip1 tasarimlarda modellenecek ardisil devre durumlara ayrilir ve bu
durumlar arasi baglantilar amaclara uygun tanimlanar.

= Sayisal tasarim kapsaminda farklit SDM modelleri mevcuttur.

= Bu modellerden iki tanesi siklikla kullanilir ve bu i1ki model birbirine
doniistiirilebilmektedir: 1-Moore SDM, 2- Mealy SDM.



12. SONLU DURUM MAKINELERI

= SDM vyapilari olusturulurken graflar kullanilir.

Moore makinesi temelli
tasarlanan camasir makinesi Mealy makinesine goére
kontrol birimi semasi tasarlanan satis otomati
kontrol birimi semasi



12. SONLU DURUM MAKINELERI

= Moore tipi makinelerde ¢ikis degerleri durumlara / diiglimlere yazilirken,
okunan semboller kenarlar / gecisler lizerinde gosterilir.

25/ Ver

Moore makinesi temelli

tasarlanan ¢amasir makinesi Mealy makinesine gére
kontrol birimi yemasi tasarlanan satis otomati
kontrol birimi semasi



12. SONLU DURUM MAKINELERI

= Mealy tipi makinelerde ise giris / ¢ikis degerleri kenarlar iizerinde ifade

edilir.
25/ Yok
@ d
y
50/
Basla o Ver
25/ Ver
Moore makinesi temelli
tasarlanan camasir makinesi Mea]_'y' makinesine gére

kontrol birimi semasi tasarlanan satis otomati
kontrol birimi semasi



12. SONLU DURUM MAKINELERI

Moore ve Mealy makinelerinin farkliliklar1 sunlardir:

= Moore makineleri daha kolay tasarlanir.

Moore SDM Mealy SDM



12. SONLU DURUM MAKINELERI

Moore ve Mealy makinelerinin farkliliklar1 sunlardir:

= Mealy makineler1 genelde daha az durum kiimesi tizerinden tasarlanir.

Moore SDM Mealy SDM



12. SONLU DURUM MAKINELERI

Moore ve Mealy makinelerinin farkliliklar1 sunlardir:

= Mealy makinesinde ¢ikislar gecislerde belirtilir.

Moore SDM Mealy SDM



12. SONLU DURUM MAKINELERI

Moore ve Mealy makinelerinin farkliliklar1 sunlardir:

= Moore makinesinde c¢ikislar1 gormek i1¢in makinenin anlik durumuna
bakmak gerekir.

Moore SDM Mealy SDM



12. SONLU DURUM MAKINELERI

Moore ve Mealy makinelerinin farkliliklar1 sunlardir:

= Mealy makinesinde birden fazla giris / c¢ikis baglantisi kolaylikla
tanimlanabildiginden ¢ok karmasik makine tasarimlarinda kullanilirlar.

Moore SDM Mealy SDM



12.1 Durumlarin Tanimlanmasi

= Komplike ardisil sistemlerde herbir tasarim evresi, SDM kapsaminda ayri
bir durum olarak ifade edilebilir.

= Ardisil devreler, simdiki durum bilgisini kullanarak bir sonraki durumda
hangi islemi yapacagini bilir.

= Tasarimci tarafindan biitlin durumlar tespit edildikten sonra, durumlari
birbirinden ayirt etmek icin farkl ifadeler kullanilr.

= VHDL’ de farkli durumlarn ifade etmek icin sirali tiir tanmimlamasinin
kullanilmasi gerekir.



12.1 Durumlarin Tanimlanmasi

=VHDL’ de farkli durumlann ifade etmek icin sirali tir tamimlamasinin
kullanilmasi gerekir.

= Sekildeki ¢amasir makinesi kontrol devresinde gerekli durum i¢in asagidaki
kod tanimlamasi yapilabilir.

Type durumlar is (basla, yika, durula, skm);

Moore SDM



12.2 Moore ve Mealy Makineleri

= Sentez asamasinda sirali tiirdeki herbir duruma karsilik uygun sayilar verilir.

= Ornegin asagidaki sekilde, Moore SDM ile camasir makinesi kontroliinde
ifade edilen durumlara karsilik basla = “00”, yika = “01”, durula = “10”,
skm =2 “11” seklinde atama yapilabilir.

= SDM analizinde simdiki durumu muhafaza
etmek icin yukarida verilen siral tiir tipinde
sinyal tanimlamas1 yapulir.

Type durumlar is (basla, yika, durula, skm);

Moore SDM



12.2 Moore ve Mealy Makineleri

= Sentez asamasinda sirali tiirdeki herbir duruma karsilik uygun sayilar verilir.

= Ornegin asagidaki sekilde, Moore SDM ile camasir makinesi kontroliinde
ifade edilen durumlara karsilik basla = “00”, yika = “01”, durula = “10”,
skm =2 “11” seklinde atama yapilabilir.

= Durumlar i¢cinde  baslangic  durumu
(makinenin ilk durumu), sinyale 1lk deger
atamasi olarak aktarilabilir.

Signal simdi_d: durumlar := basla;

Moore SDM



12.2 Moore ve Mealy Makineleri

= Sekil incelendiginde, camasir makinesine dair 4 farkli ¢alisma durumu ve bu
durumlar aras1 gegisleri gosteren 5 farkli ok bulundugu goriiliir.

«[lIk durum olan “basla® durumu, bosluktan gelen bir ok ile
yetkilendirilmistir.

= “S1kma” durumu makine icin son durumu
gostermektedir.

= Gecisler tizerindeki harfler (y,d,s), bir
durumdan digerine gecme 1i¢in isletilen
komutlardir.

Moore SDM



12.2 Moore ve Mealy Makineleri

= Durumlar1 ve gecis komutlar1 bilinen bir SDM analizinde durum-gecis
tablosu’ nun olusturulmasi1 hem diyagramin analizinde hem de kod
aktariminda kolaylik saglamaktadir.

= Asagidaki tablo, sekildeki camasir makinesi kontrol diyagrami i¢in iiretilen
durum-gecis tablosunu gostermektedir.

Gerekli ise
Cikislar siitunu
eklenebilir.

Camasir makinesi kontrolii i¢in
durum-gecis tablosu \

Simdiki Durum Gecis Komutu Yeni Durum
Basla y—"00" Yika
Basla d-"01" Durula
Basla s—"10" Sikma Moore SDM
Yika d-"01" Durula

Durula s—="10" Sikma




12.2 Moore ve Mealy Makineleri

= Tablo incelenirse tasarlanan SDM, “yds”, “ds” ve “s” kontrol kelimelerini

kavrayabilmektedir.

= VHDL’de bulunulan durumlar1 ifade etmek i¢in saklayici kullanilir.

Camasir makinesi kontrolii i¢in
durum-gec¢is tablosu

Simdiki Durum Gecis Komutu Yeni Durum
Basla y—"00" Yika
Basla d-"01" Durula
Basla s—"10" Sikma Moore SDM
Yika d-"01" Durula

Durula s—="10" Sikma




12.2 Moore ve Mealy Makineleri

= Burada “n” gerekli hafiza birimi sayisi olmak iizere, “2" > durum sayis1”
kuralina gore islem yapailir.

= Yine main VHDL kodunda, ardisil kontrollerin saglanabilmesi i¢in en az bir
adet process blogu kullanilmas1 gerekir.

Camasir makinesi kontrolii i¢in
durum-gec¢is tablosu

Simdiki Durum Gecis Komutu Yeni Durum
Basla y—"00" Yika
Basla d-"01" Durula
Basla s—"10" Sikma Moore SDM
Yika d-"01" Durula

Durula s—="10" Sikma




12.2 Moore ve Mealy Makineleri

= Sekil i¢in gerekli VHDL kodunu yazalim. Bu asamada herbir durum alttaki
komut ile tanimlanir. Ikinci komut ile de simdiki duruma ilk deger atamasi
yapilir.

1- Type durumlar is (basla, yika, durula, skm);

2- Signal simdi_d: durumlar := basla;

Camasir makinesi kontrolii i¢in
durum-gec¢is tablosu

Simdiki Durum Gecis Komutu Yeni Durum

Basla y—"00" Yika

Basla d-"01" Durula

Basla s—"10" Sikma Moore SDM
Yika d-"01" Durula

Durula s—="10" Sikma




12.2 Moore ve Mealy Makineleri

= Bu ornekte durumlarin herbirisi ayr bir ¢ikis olarak gortilebilir ve bu olayda
Moore makinesi kullanmak kolaylik saglar.

= Durumlar arasi gecis i¢in “y,d,s” kontrol kelimelerinden birinin kullanilmasi
gereklidir.

= Bu kelimelerin toplam sayist 3 oldugundan
iki bit giris lizerinden kodlamalar1 yapilabilir.

= Buna gore; “y” i¢in “00”, “d” i¢in “01” ve
“s” icin “10” 1kili degerlerine gore kod

yazilabilir. ‘\
Moore SDM

2" > giris sayisl




12.2 Moore ve Mealy Makineleri

= CIk sinyalinin yiikselen kenarinda iki bitlik “giris” isimli giris port bilgisi
okunacak, sonrasinda simdiki durum sinyaline yeni durum atamasi
yapilacaktir.

= Sistem c¢ikist ise ‘0’ (basla, yika, durula) veya ‘1’ (sitkma) seviyelerine sahip
olacaktir.

Moore SDM



12.2 Moore ve Mealy Makineleri

Library icee;

Use icee.std logic 1164.all;

Entity camasir sdm is

Port (clk : in std logic;
giris : in std_logic vector(l downto 0);
cikis : out std logic);

End camasir sdm:;

Architecture davranis of camasir sdm is
Type durumlar is (basla, yika, durula, skm);
Signal simdiki_d: durumlar = basla;

Begin




12.2 Moore ve
Mealy Makineleri

Process (clk)
Begin
If rising_edge(clk) then
Case simdiki _d is --
When basla =>
If (giris="00") then
cikis <='0";
simdiki_d <= yika;
Elsif (giris="01") then
cikis <='0";
simdiki_d <= durula;

66y99 igin IIOOII, 66d’3 igin "01" Ve

End if;
When yika =>
If (giris="01") then
cikis <='0";
simdiki_d <= durula;
End if;

When durula =>

End if;
When skm =>
cikis <="1";
End case;

End if;
End process;
End davranis;

¢c 9

S

i¢cin "10"




12.2 Moore ve
Mealy Makineleri

Camasir makinesi kontroli i¢in durum-gegis tablosu

Yeni Durum

Simdiki Durum Gecis Komutu

Moore SDM

Basla

y— "00"

Yika

Basla

d g "01"

Durula

Basla

s—"10"

Sikma

Yika

d e "01"

Durula

Sikma

Durula s—"10"

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

ng | RTL MU

2|5
|2
@ B
o
=
iz
[+]

Q1> cikis

cikis_i
Ik D T s-2p00 10 T
_ - cikis__2 sezbon |1 a RTL REG SYNC
dmdiki d i simdikid_i_0 s-z601 10 ° s=2p10 12 .
- vozor,s-zeca_I010] T Sdatua 11
VB0, 52 10[1:0] ]
vegio s-ze01 10110] \on o EESp—TT orol simaliki_d_i_1 o
seavad 1010 e 0] s | RTL_MUX
speg | RTL_MUX siif | RTLMUX Vs s-zer_1110] H o110 -+ T
i T sz 12110] simdiki_d_reg[1:0] o
= simdiki_d_i_4 s RTL_MUX c i o
dataudr 11
szbco 10 o & a
_ Sedatat 11 simdiki_d_i_6 o
simdiki.di_2 sirdl | RTLMUX e =
L szver 11 o RTL_REG
a s-zbi0_ 12
datadr 11 13 —I—
- sz s
B f[)RT LMUX simdik_d j_5 spr | RTL_MUX
giris[1:0] [O— sexbor 10
= datault =

£

ng T RTL MU




12.2 Moore ve Mealy Makineleri

» Sekildeki SDM yapisina dair gereklit VHDL kodunu Mealy SDM ile yazalim.

50/ Yok

50/
Ver




12.2 Moore ve Mealy Makineleri

25/Yok

25/ Ver
Satis otomat kontroli i¢in

durum-gecis tablosu

Simdiki Durum | Ge¢is Komutu / Giris Yeni Durum Cikis
sO 25kurus —'0' s25 0
sO 50kurus —'1' s50 0
s25 25kurus —'0' s50 0
s25 50kurus —'1' s75 0
s50 25kurus —'0' s75 0
s50 50kurus —'1' sO 1
s75 25kurus —'0' sO 1
s75 50kurus —'1' s25 1




12.2 Moore ve Mealy Makineleri

U

Library iece;
Use icee.std logic 1164.all;

Entity satis sdm is

Port (clk : in std logic;
giris : in std logic;
cikis : out std logic);

End satis_sdm;

Architecture davranis of satis sdm is
Type durumlar is (s0O, s25, s50, s75);
Signal simdiki d: durumliar = s0;
Begin




Process (clk)

12.2 Moozre ve Begin
° ° If rising edge(clk) then
Mealy Makineleri Sindi 03

Case simdiki_d is -~ “25 Kurus” igin '0', “50 Kurus” igin '1'
When s0 =>

Process (clk)

L

If (giris='0") then
cikis <='0;
simdiki_d <=s25;

Elsif (giris='1") then

. >
Begin cikis <=0’
1S1 simdiki_d <= s50;
If rlsmg_.edg.e(oclk) then i
Case simdiki d is wilfe? 25 =0>) )
~ giris='0") then
When s0 => cikis <= 0"

If (giris='0") then

simdiki_d <=s50;
Elsif (giris='1") then

cikis <='0°"; cikis <= '0';
simdiki d <=s2 5, s1n.1d1k1_d <=s75;
. T End if;
Elsif (giris='1") then When 550 =>
kis <="'0": If (giris='0") then
CIKi1s == 15 cikis <="'0";

simdiki_d <= s50;

simdiki_d <= s75;
Elsif (giris='1") then

End lf; cikis <="'1";
When s25 => simdiki_d <= s0;
. End if;

If (giris='0") then When 575 =>
1,4 —n. If (giris="0") then
cikis <="'0"; cikis <= 1"

simdiki d <= s50;

simdiki_d <= s0;
Elsif (giris='1") then

Elsif (giris='1") then cikis <=1,
CikiS <="'0" simdiki_d <= s25;
T End if;
51md1k1_d <= S75, End case;
rs End if;
End lf’ End process;

End davranis;




12.2 Moore ve
Mealy Makineleri

When s50 =>

If (giris='0") then
cikis <="0";
simdiki d <=s735;

Elsif (giris='1") then
cikis <="1";
simdiki d <= s0;

End if;

When s75 =>

If (giris='0") then
cikis <="1";
simdiki_d <= s0;

Elsif (giris='1") then
cikis <="1";
simdiki d <= s25;

End if;

End case;
End if;
End process;
End davranis;

Process (clk)
Begin
If rising_edge(clk) then
Case simdiki_d is -~ “25 Kurus” igin '0', “50 Kurus” igin '1'
When s0 =>
If (giris='0") then
cikis <="'0";
simdiki_d <=s25;
Elsif (giris='1") then
cikis <="'0";
simdiki_d <= s50;
End if;
When s25 =>
If (giris='0") then
cikis <='0";
simdiki_d <=s50;
Elsif (giris='1") then
cikis <="'0";
simdiki_d <=s75;
End if;
When s50 =>
If (giris='0") then
cikis <="0";
simdiki_d <= s75;
Elsif (giris='1") then
cikis <="'1";
simdiki_d <= s0;
End if;
When s75 =>
If (giris='0") then
cikis <="1";
simdiki_d <= s0;
Elsif (giris='1") then
cikis <="1";
simdiki_d <= s25;
End if;
End case;
End if;
End process;
End davranis;




12.2 Moore ve
Mealy Makineleri

Satis otomat kontrolii i¢in durum-gecis tablosu

Mealy SDM Simdiki Durum | Gecis Komutu / Giris Yeni Durum Cikis
sO 25kurug —'0' s25 0
sO 50kurug —'1' s50 0
s25 25kurus —'0' s50 0
s25 50kurug —'1" s75 0
w0 s50 25kurug —'0' s75 0
Ver s50 50kurug —'1" sO 1
s75 25kurus —'0' sO 1
s75 50kurus —'1' s25 1
25/ Ver
simdiki_d_reg[1:0]
o - C _ cikis i
—‘7 simdiki d i Sllr:dlkl‘d‘l_z b sobon 10
V=B"01", 5=1'b0 10[1:0] 5=2b1] S=2'b01 11
V=B"10", S=default  11[1:0] \‘ o] z:zﬁ :?ﬂgi ﬁ O[1:0] RTL_REG s=2bio 12 o
=T RTL_MUX s-2p10  12[10] =211 13
‘ 5167 T RTL_MUX sp1:0) | RTLLMUX
cdk [ ‘ - cikis_reg
giris [ simdiki d_i_0 >DC Qb ks
V=B"10", 5=1'60  10[1:0] ]
S=default  11[1:0] . RTL_REG
Vivado /

RTL_MUX

simdiki_d_i__1
s=1b0  10[1:0]

S=default |1[1:0]

RTL_MUX

Elaborated Design Ciktis1
(RTL Sematik Diyagrami)




SONRAKI DERS KONUSU

13- ORNEK UYGULAMALAR (EK)



ILERI SEYISAL SISTEMLER

13- ORNEK UYGULAMALAR (EK)

Ders sorumlusu:

Do¢. Dr. Hasan KOYUNCU



13. ORNEK UYGULAMALAR (EK)

Ornek 13.1: S1v1 seviye kontrolii igin;

- 8 bitlik girdi isimli giris port sinyali islenerek, pompa isimli ¢ikis portuna
pompanin ¢calismasi i¢in ‘1°, durmasi i¢in ‘0’ seviyeleri gonderilecektir.

- S1v1 seviyesinin, maksimum seviye (250) ve minimum seviye (20) aras1 degerler
alabilecegi bilinmektedir.

Sivi
Girisi

4]

- rst giris port sinyali ‘1’ —
oldugunda pompa durdurulacak, Seviye
clk giris port sinyalinin @ T
yiikselen kenarinda bilgiler
islenerek pompaya gerekli ¢ikig | Minimum

Seviye

iletilecektr, =0 0———

Sensor

Tasarim i¢in  gerekli VHDL et
ilgisi
kodunu yaziniz. (8 bitlik)




13. ORNEK UYGULAMALAR (EK)

Ornek 13.1: S1v1 seviye kontrolii i¢in gerekli VHDL kodunu yaziniz.

Pompa | <@— S

Girisi

—

(8 bitlik)

Library ieee;
Use icee.std logic 1164.all,;

Entity seviye kontrol is

Port (clk, rst : in std logic;
seviye : in std logic vector (7 downto 0);
pompa: out std logic);

End seviye kontrol;




13. ORNEK UYGULAMALAR (EK)

Ornek 13.1: Sivi seviye kontrolii i¢in gerekli
VHDL kodunu yaziniz.

Architecture davranis of seviye kontrol is

Constant low_level: std logic vector :="00010100"; --deger karsiligi 20
Constant high level: std logic vector :="11111010"; --deger karsilig1 250
Begin
Process (rst, clk)
Begin
If rst='1" then
pompa <="'0'";
Elsif rising_edge(clk) then
If ( seviye <=low level ) then
pompa <="1";
Elsif ( seviye >= high level ) then
pompa <="0";
End if;
End if;
End process;
End davranis;




13. ORNEK UYGULAMALAR (EK)

Maksimum
Seviye

Minimum
Seviye

Pompa ‘-— Siv1

———  Girisi

Architecture davranis of seviye kontrol is
Constant low _level: std logic vector :="00010100";
Constant high level: std logic vector :="11111010";
Begin
Process (rst, clk)
Begin
If rst="1"' then
pompa <="0';
Elsif rising_edge(clk) then
If ( seviye <= low_level ) then
pompa <="1";

Sensor Elsif ( seviye >=high level ) then
Bilgisi pompa <= '0';

(8 bitlik) . End if;

Vlva.do./ End if;
Elaborated Design Ciktis1 End process;
(RTL Sematik Diyagrami) |_End davranis;
rst D
pompa_reg
CLR
clk D e C
T CE Q 4D pompa
o7-0] pompa0_i_0 —‘7 pompa_i D
sevivel o) v=B"11111010"  I1[7:0] Q ° ‘ >=1b1 :? RTL_REG_ASYNC
S=default
RTL_GEQ
RTL_MUX
pompa0_i
0[7:0]
0
V=B"00010100"  I1[7:0] Q ‘

RTL_LEQ



13. ORNEK UYGULAMALAR (EK)

Maksimum

Seviye

Minimum
Seviye

e clk
8 rst

> M seviye[7:0]
8 pompa

= CLK_PERIOD

0.000 n=s

rst

seviye[7:0]

pompa

CLK_PERIOD

Pompa | <§— Siv1

—— Girisi

Sensor
Bilgisi
(8 bitlik)

200.000 ns 400.000 ns

Library ieee;
Use iece.std logic 1164.all;

Entity seviye kontrol is

Port (clk, rst : in std logic;
seviye : in std _logic vector (7T downto 0);
pompa: out std_logic);

End seviye kontrol;

Vivado /
Simulation Ciktisi

600.000 ns 800.000 ns 1,000.000 ns 1.200.000 ns 1.4

ARRRRAARANAAAARA AR

20000 ps

20000 ps



13. ORNEK UYGULAMALAR (EK)

Ornek 13.2: Bir otoparkta bos park yeri sayisin1 belirtmek igin;

- ’er bitlik giris_sen ve cikis_sen isimli sensor girisleri (giris port sinyalleri)
sirastyla giren ara¢ ve ¢ikan arac icin islenerek, yer bilgisi isimli ¢ikis portuna
otopark 1¢i ara¢ sayisi (ikili) aktarilacaktir.

- rst giris port sinyali ‘1’ oldugunda arag¢ say1 bilgisi birlenecek (otopark tamamen
bos, 255 bos yer var), clk giris port sinyalinin yiikselen kenarinda bilgiler i1slenerek
gerekli say1 ¢ikisi iiretilecektir.

Tasarim i¢in gereklt VHDL
kodunu yaziniz.




13. ORNEK UYGULAMALAR (EK)

Ornek 13.2: Park yeri kontrolii i¢in gerekli VHDL kodunu yaziniz.

Library ieee;
Use iecee.std logic 1164.all;
Use ieee.numeric std.all,

Entity park yer1 is
Port (clk, rst, giris sen, cikis sen : in std logic;

yer bilgisi: out std logic vector (7T downto 0));
End park yert;




13. ORNEK UYGULAMALAR (EK)

Ornek 13.2: Park
yeri kontrolii 1¢in
gereklt VHDL
kodunu yaziniz.

—

Architecture davranis of park yeri is

Signal yer sayici: unsigned (7 downto 0) := (others =>'1");
Signal giris vek, cikis_vek: unsigned (3 downto Q) := (others =>'0");

Constant max_deg: unsigned (7 downto 0) := (others =>'1"); -- 255 arag i¢gin

Begin
Process (rst, clk)
Begin
If rst="1" then
yer sayici <= (others =>'1");
Elsif rising_edge(clk) then

giris_vek <= giris_vek(2 downto 0) & giris_sen;
cikis vek <= cikis vek(2 downto 0) & cikis_sen;
-- Ara¢ hem girer hem de ¢ikarsa bog yer sayist degismez
If giris vek ="1100" and cikis vek ="1100" then

yer sayici <= yer sayici;

-- Arag girerse bos yer azalir

Elsif giris vek ="1100" and yer sayici >
yer_sayici <= yer sayici - 1;

-- Arag ¢ikarsa bos yer artar

Elsif cikis vek ="1100" and yer sayici < max_deg then

yer_sayici <=yer sayici + 1;
End if;
End if;
End process;
yer bilgisi <= std logic vector (yer_sayici);
End davranis;

"00000000"

A

A

then

Ayni

to_unsigned(0,8)




13. ORNEK UYGULAMALAR (EK)

Vivado /

Elaborated Design Ciktis1
(RTL Sematik Diyagrami)

Architecture davranis of park yeri is
Signal yer sayici: unsigned (7 downto 0) = (others =>'1");

Signal giris vek, cikis vek: unsigned (3 downto 0) := (others =>'0");

Constant max_deg: unsigned (7 downto 0) := (others =>'1"); -- 255 arag icin

Begin
Process (rst, clk)
Begin
If rst="1' then

yer_sayici <= (others =>'1");
Elsif rising_edge(clk) then

giris_vek <= giris_vek(2 downto 0) & giris_sen;
cikis_vek <= cikis_vek(2 downto 0) & cikis_sen;
-- Arag¢ hem girer hem de ¢ikarsa bos yer sayist degismez
If giris vek ="1100" and cikis_vek ="1100" then

yer sayici <= yer sayici;
-- Arag girerse bos yer azalir

Elsif giris vek ="1100" and yer sayici > "00000000" then

yer_sayici <= yer sayici - 1;
-- Arag ¢ikarsa bog yer artar
Elsif cikis_vek ="1100" and yer_sayici < max_deg then

yer sayici <=yer sayici + 1;

End if;
End if;
End process;

yer bilgisi <= std_logic vector (yer sayici);

End davranis;

yer_sayici_reg[7:0]

<

[ ver_bilgisi[7:0]

CE Q

D
PRE

RTL_REG_ASYNC

.
o] yer_sayidl_i_|
11[70] < " yer_sayici0_i yer_sayici_i_0
RTLLT ° im0 o
=T AND S=defsut 11
yer_sayici2_i_0 ! yer_sayici_i_1
1070 1o _ver sayicli s | RTLMUX e 10
H[T0] o o
" Sedefour 11
RTLGT RTL_AND
- o _yersayicl i_1 % | RTLLMUX
@i
10[3:0] yer’:ym - ]
cikis vek_reg[3:0] v=rtior 1130] | = RTL_AND
RTL_EQ —
C
. o EE Q yer_sayici2_i " min:sOpj yer_sayici_i
cikis_sen — 1039] A 4”70](_\ ek sret 1070) opal
v=E1100 1130] = \‘_//‘ S=defauit_11[7:0]
ikis_vek0 RTL_SUB
cikis_vek0_i RTL_REG RTLEQ - % | RTLLMUX
Lo :‘: a B plusOp_i
S=defsuit
RTL_MUX apar{ -
5 |
st [ — RTL_ADD
clk .
L giris_vek0_j giris_vek_reg[3:0]
s=1ea_ 10 ° c
Sedefault |1 CE Q
D
T | RTL_MUX
i RTL_REG

giris_sen [_»




13. ORNEK UYGULAMALAR (EK)

Library ieee;
Use ieee.std logic 1164.all,;
Use ieee.numeric_std.all;

Entity park yerti is
Port (clk, rst, giris_sen, cikis sen : in std logic;

yer bilgisi: out std logic vector (7 downto 0));
End park yerti;

Vivado /
Simulation Ciktisi

2,356.000 ns

500.000 ns 1,500.000 ns 2,500.000
o clk
8 rst
8 giris_sen
e cikis sen
® ver_bilgisi[7:0] fe

¢ clk_period

500.000 ns 1,000.000 ns 1,500.000 ns 2.,000.(

o clk
o rst

e giris_sen

@ cikis_sen
% yer_bilgisi[7:0] fe

! clk_period ' 10000 ps
———————————



13. ORNEK UYGULAMALAR (EK)

Ornek 13.3: Bir trafik lambasindaki renk degisimi i¢in;

-30 saniye kirmzi, 5 saniye ve 30 saniye yesil yanmasi
saglanacaktir.

- rst giris port sinyali ‘1’ oldugunda 151k kirmiziya donmelidir.

- clk giris port sinyalinin yiikselen kenarinda ise gerekli islemlerin yapilarak red,

yellow ve green isimli 1’er bitlik c¢ikis portlarina gerekli yetkilendirme

saglanacaktlr. sayici =yellow sure
and
geri ="l sayici =green_sure

Tasarim i¢in gereklt VHDL
kodunu yaziniz.

sayici =yellow_sure
and
geri ="0'

sayici <red sure sayici < yellow sure sayici < green_sure



13. ORNEK UYGULAMALAR (EK)

Ornek 13.3: Bir trafik lambasindaki renk degisimi i¢in gerekli VHDL kodunu
yaziniz.

sayici =yellow_sure
and
geri="I' sayici =green_sure

sayici =yellow_sure
and
geri ='0'

sayici <red sure sayici < yellow_sure sayici < green_sure

Library icee;
Use ieee.std logic 1164.all;
Use iece.numeric std.all;

Entity trafik kontrol is
Port (clk, rst : in std logic;

red, yellow, green: out std logic);
End trafik kontrol;



13. ORNEK
UYGULAMALAR (EK)

Ornek 13.3: Bir trafik
lambasindaki renk degisimi
icin gereklit VHDL kodunu
yaziniz.

sayici =yellow_sure
and

Architecture davranis of trafik_kontrol is

Type durumlar is (red_state, yellow_state, green_state);
Signal simdiki_d, gelecek d: durumlar;

Signal sayici: integer range 0 to 31:=0;

Signal geri: std logic :="'0';

-- siireler clk periyodu 1sn i¢in ayarli

Constant red_sure: integer:= 30;

Constant yellow_sure: integer:= 5;

Constant green_sure: integer:= 30;

Begin

Process (rst, clk)
Begin
If rst="1" then

sayici <= 0;
simdiki_d <=red_state;

Elsif rising_edge(clk) then

geri="1" sayici =green_sure

and
geri ='0'

sayici <red_sure sayici <yellow_sure

sayici =yellow_sure

sayici <= sayici + 1;
simdiki_d <= gelecek d; -- gelecek durum diger processten geliyor
-- Durum gecgislerinde sayac sifirlama
If (simdiki_d =red_state and sayici = red_sure) or
(simdiki d = yellow_state and sayici = yellow sure) or
(simdiki_d = green_state and sayici = green_sure) then
sayici <= 0);
End if;
-~ Geri sinyali giincelleme
If (simdiki_d = green_state and sayici = green_sure) then

geri <="1";
sayici < areen sure  ESIf (simdiki d =red_state and sayici = red_sure) then
geri <="0';
End if;
End if;

End process;




1 3 . 6RNEI{ Pl;l(;(;relss (simdiki_d, sayici) -- tirettigi ¢cikti gelecek d ve gerekli renk

UYGULAMALAR (EK) rd <= 0 yellow <= 0 green <=1
- W ~

When red_state =>

Ornek 13.3: Bir trafik red <=\l

- i . If (sayici = red_sure) then
lambasindaki renk degisimi gelecek d <= yellow state;
.o . Else
icin gerekli VHDL kodunu celecek d <= red state;
yaziniz. . End if;

e e
When yellow state =>
yellow <="1";
If (sayici = yellow_sure) then
If (geri='0") then
gelecek d <= green_state;

Else
gelecek d <=red_state;
End if;
Else
sayieit=yellowr gues gelecek_d <= yellow_state;
geri ="'l" sayici =green_sure End if;

When green_state =>
green <="'l";
If (sayici = green_sure) then
gelecek d <= yellow_state;
Else

gelecek d <= green_state;
sayici <red_sure sayici < yellow_sure sayici < green_sure End if:
s

sayici =yellow_sure
and
geri ="0'

End case;
End process;
End davranis;




13. ORNEK Ornek 13.3: Bir trafik lambasindaki renk
UYGULAMALAR (EK) degisimi i¢in gereklit VHDL kodunu yaziniz.

Process (simdiki_d, sayici) -- iirettigi ¢ikti gelecek d ve gerekli renk
Begin
red <="0'; yellow <="0"; green <='0';
Case simdiki d
_
When red state =>
red <="I";
If (sayici =red sure) then
gelecek d <= yellow_state;
Else
gelecek d <=red state;
End if:

sayici =yellow_sure
and
geri ="l sayici =green_sure

sayici =yellow_sure
and
geri ='0"

sayici <red_sure sayici < yellow_sure sayici < green_sure



13. ORNEK
UYGULAMALAR (EK)

Ornek 13.3: Bir trafik lambasindaki renk
degisimi i¢in gereklit VHDL kodunu yaziniz.

== [T -

When yellow_state =>
yellow <="1";
If (sayici = yellow_sure) then
If (geri='0") then
gelecek d <= green_ state;

Else
gelecek d <=red state;
End if;
Else
gelecek d <=yellow state;
End if:

sayici =yellow_sure
and
geri ="l sayici =green_sure

sayici =yellow_sure
and
geri ='0"

sayici <red_sure sayici < yellow_sure sayici < green_sure



13. ORNEK Ornek 13.3: Bir trafik lambasindaki renk
UYGULAMALAR (EK) degisimi i¢in gereklit VHDL kodunu yaziniz.

When green state =>

green <="1";

If (sayici = green_sure) then
gelecek d <= yellow_state;

Else
gelecek d <= green_state;

End if;

End case;
End process;
End davranis;

sayici =yellow_sure
and
geri ="l sayici =green_sure

sayici =yellow_sure
and
geri ='0"

sayici <red_sure sayici < yellow_sure sayici < green_sure



13. ORNEK UYGULAMALAR (EK)

Vivado /
Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

sayici =yellow_sure
d

geri="l' sayici =green_sure

sayici =yellow_sure

sayici =red_sure

sayici <red_sure sayici < yellow_sure sayici < green_sure
=
1075:0] HV‘:D P
o] =
RTLEQ
sayicii
| oo “”“:—‘ s e s2ycireglad] gelecek di _
mo (= .
s @ reens
o sayiciti RILMUX -
nra © : it < RTLROM D P
simdiki_d_i ul I - I 5 green
o ATLOR gelecekcei_1 = /IJ
o 2o geri_i o0l 3 ; RTLMUX
e - . rm R g;(eneiuu_i g
n
. RTL_MUX T RTL MUK o) opo redi
ol ’—S RTL MUK o ErE ©
L1 N a
= O + s sy | RTLMUK u =
ck geleca i 2 sy | FTLMUX
gerid_i_ 0 geni_reg
o o FST yellon i
0 b - B L_ROM o
RTLMUX D gar - - = > yellow
RTL_REG_SYNC simdiiki_d_reg[1-0]
= <
o ° =

=t

ak

RTL_REG_ASYNC
g5 sayich L0 o Sayikii
- ] =}
— — 1 RTLADD
RILEQ RILOR
sayicii —
| 10g5: sayich ] ) 040
o _ %0 114:0) —|
RTLEQ o sayEliD oS3t 5 | RTLMUX
simadiki_d_i o ._.)\'D ) =
o) RTLAND RTLGR
1] =] geril_i
122 o a
n
s0:o RTLMUX
: RTL_MUX
genil_i_0 | gerni_reg
1] \] a CRET
n
& q
S/ﬁnﬂux 0.
- | RTL_REG_SYNC




13. ORNEK UYGULAMALAR (EK)

Elaborated Design Ciktisi
(RTL Sematik Diyagrami)

Vivado /

sayici =yellow_sure
d

geri = sayici =green_sure

sayici =yellow_sure

d
sayici =red_sure 0

sayici < yellow_sure sayici < green_sure

sayici <red_sure

 sayio o sayed 0 e
=) T e
| ] RTLEQ FAne RILOR
— sayic
| o R - e s e et .
o | = Rt o N T a wsa o reen
RTLEQ D o syl i0 o sa)ﬂmo,w T EG o
simelie_el n ) = - = > graen
e20) RTLAND FTLOR gelecek i1 [
= az0) gerd.i gelecek d i3 sy | RT-MUX
2 L]
RTL MUK n - nw: ane red i
snin ’7 = P 5
. | < “ﬁnﬂux - = O rad
dk > s:wﬁnj"w
geni0_i_0 geni_reg
o R - yelloni
- Y = M.
RTL_MUX L. - 5 yellow
| ATL_REG_SYNC ca:wmmm.mgu-o] s:m\’IJRTLMUX
o “ =
RTL_REG_ASYNC
sayici_regl40] :
¥ g gelecek_d i _
JaR
]
RTL_ROM 1 ﬁ o
RTL_REG_ASYNC = [ green
i gelscsk_d i1 :
ecek _d i 0 1041:0] )
_0_?:: ; L 0 10 gelecek_di_3 SI0] RTLMUK
10 L e >
np:e :
5 RTL_MUX 10101 0 10] rad_i
| FTLMUX - 211:0] o
| T] a
red
— =l | RTL ML [ -
. RTL_ML
gelecek i 2 sy | RT-M
H50] O] '— yellow_i
RTL_ROM o \
- n =]
5 [ yellow
2
simdiki_d_reg[1:0]
i RTL_MUY




13. ORNEK UYGULAMALAR (EK) _

sayici =yellow_sure
and
. Ft e "
geri ="l sayici =green_sure

ibrary ieee;
Use ieee.std logic 1164.all;
Use ieee.numeric_std.all,

sayici =yellow_sure
and
geri ='0'

Entity trafik kontrol is
Port (clk, rst : in std logic;
red, yellow, green: out std logic);

End trafik kontrol;

sayici <red_sure sayici < yellow_sure sayici < green_sure

Vivado /
Simulation Ciktilari

o clk
8 rst
s red
s yellow
8 green

« CLK_PERIOD

e clk
e rst

e red

s yellow

@ green

= CLK_PERIOD




FINISH
'

GREAT
JOB Ilf




ESINLENILEN VE TAVSIYE EDILEN KRYNAKLAR

Digital Fundamentals, 2015 (Thomas L. Floyd, 11. Baski, Global Edition)
Her Yonliyle FPGA ve VHDL, 2015, (Engin Saritas - Sedat Karatas, 3. Baski, Palme Yayinlar)

Donanim Tanimlama Dili VHDL ve FPGA Uygulamalari, 2017, (Dr. Ibrahim Savran, 1. Baski,
Papatya Bilim Yayinlari)

FPGA Prototyping by VHDL Examples: Xilinx Microblaze MCS Soc, 2017, (Pong P Chu, 2.
Baski, Wiley Press)

Digital Design: With and Introduction to the Verilog HDL, VHDL, and System Verilog, 2018 (M.
Morris Mano & Michael D. Ciletti, 6. Baski, Global Edition)

VHDL ve Verilog ile Sayisal Tasarim, 2019, (Dog. Dr. Burak Kelleci, 2. Baski, Seckin Yayinlari)
FPGA ile Gomiilii Sistemler ve Sayisal Devre Tasarimi, 2020, (Dr. Serkan Dereli, Nobel Yayinlari)

Digital Design and Computer Architecture, RISC-V Edition, 2021 (Sarah Harris & David Harris,
1. Baski, Morgan Kaufm)

Getting Started with FPGAs: Digital Circuit Design, Verilog, and VHDL for Beginners, 2023,
(Russell Merrick, No Starch Press)

Fundamentals of VHDL for FPGA Programming Using Vivado, 2025, (Majid Pakdel, Wiley-IEEE
Press)



	Sunu-1
	Sunu-2
	Sunu-3
	Sunu-4
	Sunu-5
	Sunu-6
	Sunu-7
	Sunu-8
	Sunu-9
	Sunu-10
	Sunu-11
	Sunu-12
	Sunu-13
	Kaynakça.pdf
	ESİNLENİLEN VE TAVSİYE EDİLEN KAYNAKLAR


