
Ders sorumlusu:

Doç. Dr. Hasan KOYUNCU

1



1. SAYISAL SİSTEMLER VE FPGA

 FPGA; “Sahada Programlanabilir Kapı Dizileri” anlamına gelen “Field
Programmable Gate Array” ifadesinin kısaltmasıdır.
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 FPGA, üretimden sonra istenen
fonksiyona göre donanım yapısı kullanıcı
tarafından değiştirilebilen entegre
(bütünleşmiş) devre olarak tanımlanır.

 Herhangi bir üretim alanında
kullanılması planlanan bir ürünün,
üretimden önceki prototipleme ve test
işlemleri gibi birçok işlemi FPGA’ler
tarafından gerçekleştirilir.



1. SAYISAL SİSTEMLER VE FPGA

 Bu aygıtlar; bir elektronik tansiyon aletinin kontrol entegresinden dijital
kol saatinin işlemcisine, ses anfisinin sayısal entegresinden cep
telefonlarındaki işlemciye kadar çok geniş bir alanda kullanılabilir
özellikleriyle ön plandadır.
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 FPGA’ler; yerine göre bir mikroişlemci gibi, bir
şifreleme ünitesi gibi veya bir grafik kartı gibi
işlem görebilmektedir.

 Hatta bu üç işlemin aynı anda çalışabileceği bir
sistemin parçası da olabilir.

 Günümüzde ileri teknoloji ürünü olarak akla gelen
neler varsa tamamının gelişim süreçleri FPGA’ler
ile sağlanmıştır.



1. SAYISAL SİSTEMLER VE FPGA
 Günümüzde önemli gömülü sistem entegreleri olarak görülen ARM
mikrodenetleyicileri FPGA’ler üzerinde geliştirilmiştir.
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 Gömülü sistem teknolojileri kapsamına giren mikrodenetleyici, mikroişlemci
ile ASIC adı verilen özel amaçlar için tasarlanan entegre devrelerin FPGA’den
farklılıklarının bilmesi gereklidir.

 ASIC, özel uygulamalar için geliştirilen
tümleşik bir devredir. Sayısal devrelerin yanında
istenirse analog devreler ve alıcı-verici devreleri
içebilir.

1.1 FPGA ile ASIC (Uygulamaya Özel Entegre Devre) 
Karşılaştırması

Örneğin; telefonun 
içindeki işlemci veya 

çamaşır makinesindeki 
kontrol devresi bir 

ASIC olarak işlev görür. Tek bir amaç için tasarlanan ASIC’ler ömürleri
dolana kadar bu işi yaparlar.



5

Yapıları itibari ile silikon seviyede olduklarından dolayı işlevleri kesinlikle
değiştirilemez.

1.1 FPGA ile ASIC (Uygulamaya Özel Entegre Devre) 
Karşılaştırması
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ASIC’lerin FPGA’ler ile benzer yönü ise mantıksal devre tasarımlarının
VHDL veya Verilog tarzı dillerle geliştirilmesidir.

1.1 FPGA ile ASIC (Uygulamaya Özel Entegre Devre) 
Karşılaştırması
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Ancak ASIC yapılarının üretimi gerçekleştirildikten sonra tasarımlarında
bir hata tespit edilirse, bütün üretimlerin yeniden toplanması ve yeni
üretimlerin piyasaya sürülmesi gerekir.

1.1 FPGA ile ASIC (Uygulamaya Özel Entegre Devre) 
Karşılaştırması
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 Güç tüketimi açısından FPGA’lere göre daha az enerji harcayıp daha az yer
kaplamakta ve daha hızlı işlem yapabilmektedir.

 Tasarım maliyetleri açısından daha avantajlı hale gelebilmeleri için aynı
ASIC devreden milyonlarca basılmalıdır.

 ASIC devrelerinin FPGA’lerden en önemli farkı; işlevlerinin üretim
sonrası değiştirilememesi, yani yeniden programlama opsiyonlarının
bulunmamasıdır.

 ASIC tasarımları genelde FPGA üzerinde gerçekleştirilmekte,
fonksiyonellik ve performans test edilmekte, sonrasında tasarlanan
sayısal devre ASIC olarak gerçeklenmektedir.

1.1 FPGA ile ASIC (Uygulamaya Özel Entegre Devre) 
Karşılaştırması
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1.2 FPGA ile Mikrodenetleyici Karşılaştırması

Mikrodenetleyiciler, belirli işlevler için entegre devrelerle güçlendirilmiş
mini bir bilgisayar gibidir.

 FPGA’lere göre daha az elektrik
tüketmekte ve daha ucuza üretilmektedir.

 Hem mikrodenetleyicilerde hem de
FPGA’lerde belli amaçlar için kod
yazılarak bir çipe aktarılır.

Mikrodenetleyiciler hazır devreler
üzerinden bu işlemi gerçekleştirirken,

FPGA’lerde tüm işlemlerin ayrı ayrı
kodlanması gerekir.
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1.2 FPGA ile Mikrodenetleyici Karşılaştırması

 Bir diğer fark ise komutların işlenme biçiminde saklıdır.

Mikrodenetleyiciler komutları satır satır işlerken, FPGA’ler aynı anda
birden fazla satır komutu işleyebilmektedir. Bu durum FPGA’ler ve
mikrodenetleyiciler arasındaki en önemli ayrımdır.

1.3 FPGA ile Mikroişlemci Karşılaştırması

 FPGA’ler gerekli talimatları, tasarımlarının doğası gereği paralel olarak
gerçekleştirme imkânına sahiptir. Belirli program parçaları ile sırayla
(ardışıl, sequential) kod işleme yetisi de mevcuttur.

Mikroişlemcilerde ise komutların sırayla işletilmesi gereklidir.
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1.3 FPGA ile Mikroişlemci Karşılaştırması

 FPGA temelli bir tasarımın geliştirme süreci, mikrodenetleyici veya
mikroişlemci içeren bir sistem tasarımından uzun zaman almaktadır.

Ancak bu durum, FPGA’lerin ham hali ile
tasarımcıya sunulmasından kaynaklıdır.

 Bir FPGA üzerinden bir mikrodenetleyici veya
bir mikroişlemci tasarlanabilmesine rağmen, tersi
durum söz konusu değildir.

 Tasarım veya programlama açısından inceleme yapılırsa, mikroişlemcilere
dair komut kümeleri mevcuttur ve bu bilgiler işlemcinin belleğinde saklıdır.

 Komutlar işletilirken bu bellek devreye alınır.
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1.3 FPGA ile Mikroişlemci Karşılaştırması

 FPGA’lerde ise elektriksel ilişkisi bulunan mantık hücrelerinin
birbirlerine farklı şekillerde bağlanması ile tasarım sağlanır.

 Güç tüketimleri temel alınırsa mikroişlemcilerin FPGA’lere göre daha
tasarruflu olduğu görülür.

Mikroişlemciler GHz mertebesinde işlem yapmasına karşın, FPGA’ler
genellikle MHz düzeyinde frekans hızına sahiptir.

Ancak veri işleme noktasında FPGA’lerin mikroişlemcilerden çok daha
fazla işlem hacmine sahip oldukları açıktır.
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1.4 Programlanabilir Mantık Cihazları (PLD)

 “Programmable Logic Device” (PLD) olarak bilinen ekipmanlar, yeniden
yapılandırılabilir devreler oluşturabilmek için kullanılan elektronik
bileşenlerdir.

 PLD’ler sabit bir işleve sahip mantık kapılarının aksine üretim esnasında
tanımsız işleve sahiptir. Bu yüzden elektronik devrelerde kullanılmadan
önce yapılandırılmaları yani programlanmaları gerekir.

 PLD’ler şu anki durumuna, Programlanabilir Salt Okunur Bellek
(Programmable Read Only Memory  PROM) birimlerinden başlayan uzun
bir gelişim süreci sonrası ulaşmışlardır.

 PROM, PLA, PAL, GAL, SPLD, CPLD ve FPGA yapıları PLD
kapsamındadır.
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1.4 Programlanabilir Mantık Cihazları (PLD)

PROM (Programmable Read Only Memory):

 Kullanıcı tarafından programlanabilen basit belleklerdir. Bir PROM
içerisine; bir mikroişlemci programı, basit bir algoritma veya durum
makinesi kodu yüklenebilir.

 PROM elemanı oldukça yavaş çalıştığından, hız gerektiren tasarımlarda
kullanışlı değildir.

 PROM’lar sadece bir defa programlanabilirken, EPROM ve EEPROM gibi
türleri silinip tekrar programlanabilmektedir.

 PROM’lar sınırlı sayıda giriş / çıkışı bulunan herhangi bir kombinasyonel
devrenin gerçekleştirilmesi için uygun cihazlardır.

Ardışıl devreleri PROM türleri ile tasarlamak için, flip-flop veya
mikroişlemciler harici olarak tümleşik yapıya eklenmelidir.



1.4 Programlanabilir Mantık Cihazları (PLD)

PLA (Programmable Logic Array):

 Programlanabilir mantık dizileri
(PLA), PROM’lardaki hız ve sınırlı
sayıda giriş sorunlarına çözüm olarak
geliştirilmişlerdir.

 PLA yapıları çok sayıda girişi
desteklemekte ve PROM türlerine
göre daha hızlı çalışmaktadırlar.

 PLA’da girişler, VE (AND)
kapılarından oluşan programlanabilir
yapıya bağlıdır.
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1.4 Programlanabilir Mantık Cihazları (PLD)

PLA (Programmable Logic Array):

 Bu düzlemde tasarıma dair AND
işlemleri gerçekleştirilir.

AND düzleminin çıkışı VEYA (OR)
düzlemine bağlanmaktadır.

 OR düzleminde tasarıma ait gereken
VEYA işlemleri yapılır ve istenen
sistem çıkışları elde edilir.
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1.4 Programlanabilir Mantık Cihazları (PLD)

PLA (Programmable Logic Array):

 PROM’daki gibi bütün 
kombinasyonlar gerçekleştirilmez ve 
sadece gerekli işlemler yapılır. 

 PROM’daki gibi minimum terimler
kanonik açılımı işletilerek, çarpımların
toplamı üzerinden sistem çıkışları
üretilir.
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1.4 Programlanabilir Mantık Cihazları (PLD)

PLA (Programmable Logic Array):

 PLA’ların iki adet programlanabilir
düzleme (AND ve OR) sahip olması,
devre karmaşıklığını artırdığı gibi
fazladan kullanılan herbir sigorta
bağlantısı daha fazla gecikmeye
sebebiyet verir.
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1.4 Programlanabilir Mantık Cihazları (PLD)

 Programlanabilir dizi mantığı (PAL) ve
Genel dizi mantığı (GAL), minimum
terimler kanonik açılımı ile tasarıma
dayanır.

Ancak, PAL içindeki AND düzlemi
programlanabilmesine rağmen, OR
düzlemi sabit tutulmuştur ve
programlanamaz.
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PAL (Programmable Array Logic) ve GAL (Generic Array Logic):



1.4 Programlanabilir Mantık Cihazları (PLD)

 PAL sistemi, ikinci düzleminde
sigorta gecikmeleri olmayacağından
PLA’dan daha hızlı işlem yapar.

 Ancak bu durum, PLA’ya göre daha
az tasarım esnekliği sağlar.
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PAL (Programmable Array Logic) ve GAL (Generic Array Logic):



1.4 Programlanabilir Mantık Cihazları (PLD)

 PAL entegreleri yalnızca bir kez programlanabilen (OTP  One Time
Programmable) yapıya sahiptir.
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PAL (Programmable Array Logic) ve GAL (Generic Array Logic):

PAL ve GAL yapılarına dair basitleştirilmiş içyapı 



1.4 Programlanabilir Mantık Cihazları (PLD)

 GAL entegreleri ise tekrar programlanabilir bir AND düzlemi içerir.

 GAL mimarisinin, PAL yapısına göre diğer farkı ise kombinasyonel
fonksiyonun gerçekleşmesinde kullanılan sigorta yapılarıdır.
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PAL (Programmable Array Logic) ve GAL (Generic Array Logic):

PAL ve GAL yapılarına dair basitleştirilmiş içyapı 



1.4 Programlanabilir Mantık Cihazları (PLD)

 GAL mimarisinin yeniden programlanabilmesinin nedeni, sigorta yerine
(EEPROM’un programlama mantığına benzer) MOSFET tabanlı yeniden
programlanabilen işlem teknolojisinin (E2CMOS) kullanımıdır.
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PAL (Programmable Array Logic) ve GAL (Generic Array Logic):

PAL ve GAL yapılarına dair basitleştirilmiş içyapı 



1.4 Programlanabilir Mantık Cihazları (PLD)

 PAL ve GAL mimarileri içinde OR düzlemi ve ilgili çıkışların bulunduğu
birim makrosel olarak bilinir.

Makrosel sistem çıkışında, çıktılar sürekli üretilebildiği gibi bazı makrosel
tiplerinde girdiler de alınabilmektedir.

Ayrıca bir makrosel; kombinasyonel mantık, hafıza mantığı veya bu ikisinin
kombinasyonunu sağlayacak şekilde yapılandırılabilir.

 PAL ve GAL mimarileri, SPLD (Simple Programmable Logic Device)
kapsamındadır.
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PAL (Programmable Array Logic) ve GAL (Generic Array Logic):



1.4 Programlanabilir Mantık Cihazları (PLD)

 PLA ve PAL yapıları küçük
devreler için uygulanabilir olup,
çok fazla girdi / çıktı gerektiren
büyük ve kompleks devre
tasarımları için uygulanabilir
değildir.

 Kompleks Programlanabilir
Mantık Aygıtı (CPLD);
karmaşık devre tasarımları için,
tekil entegre içinde birbiriyle
etkileşimli birden fazla PLA’nın
işlevini yerine getiren tümleşik
entegredir.
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CPLD (Complex Programmable Logic Device):

CPLD yapısı



1.4 Programlanabilir Mantık Cihazları (PLD)

 PAL ve PLA yapıları ile yalnızca birkaç yüz mantık kapısı eşdeğerinde
olan küçük devreler tasarlanabilir.

26

 CPLD ile yüzbinlerce 
mantık kapıları 
eşdeğerindeki komplike 
devre tasarımları 
gerçekleştirilebilir.

CPLD (Complex Programmable Logic Device):



1.4 Programlanabilir Mantık Cihazları (PLD)

 CPLD yapılarında
gerekli mantık hücresi
sayısı arttıkça, mantık
hücrelerinin diziliş şekli
ve tek bir genel ara
bağlantının olmasından
ötürü, hücreler arası
bağlantı sayısı da
katlanarak artar.

 Bu durum ise çok büyük
tasarımlar için önemli bir
handikap teşkil eder ve
CPLD’leri kullanışsız
hale getirir.
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Mantık blokları (hücreleri) ve ara bağlantıların, 
CPLD ve FPGA yapılarındaki tipik dizilişi

CPLD (Complex Programmable Logic Device):



1.4 Programlanabilir Mantık Cihazları (PLD)

 FPGA yapısında mantık 
hücreleri, CPLD’lerden
farklı olarak dizi 
biçiminde yerleştirilir.

 FPGA içindeki mantık 
hücreleri arası bağlar, 
yatay ve dikey 
programlanabilir ara 
bağlantılar vasıtasıyla 
sağlanır. 
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CPLD (Complex Programmable Logic Device):

Mantık blokları (hücreleri) ve ara bağlantıların, 
CPLD ve FPGA yapılarındaki tipik dizilişi



1.4 Programlanabilir Mantık Cihazları (PLD)

Mantık hücreleri arası 
gerekli olan bağlantı 
sayısı, hücre sayısına 
paralel artış gösterir.

 FPGA’lerin bu 
özellikleri sayesinde, 
büyük tasarımlar için 
CPLD’lerde karşılaşılan 
bağlantı sorunları 
minimize edilir. 
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CPLD (Complex Programmable Logic Device):

Mantık blokları (hücreleri) ve ara bağlantıların, 
CPLD ve FPGA yapılarındaki tipik dizilişi
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2. FPGA İÇYAPISI VE ÖZELLİKLERİ
 Klasik CPLD mimarisi, programlanabilir ara bağlantılara sahip PAL /
GAL veya PLA tipi mantık bloklarından oluşur.
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 Tipik bir FPGA, tipik bir CPLD’den çok daha fazla sayıda eşdeğer kapıya
sahiptir.

 Temel olarak FPGA;

1. Mimaride farklılık gösterir,
2. PAL / PLA tipi dizileri kullanmaz (daha komplike ve kullanışlı

birimler mevcut),
3. CPLD’lerden çok daha fazla yoğunluğa sahiptir.

 FPGA’lerdeki mantık üreten unsurlar genellikle CPLD’lerden çok daha
küçüktür ve bunlardan çok daha fazlası vardır.



2. FPGA İÇYAPISI VE ÖZELLİKLERİ
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 FPGA yongaları üç bölümden 
meydana gelir:
 Programlanabilir mantık blokları 
(Configurable Logic BlockCLB)

 Mantık bloklarını birbirine bağlamak 
için kullanılan programlanabilir ara 
bağlantılar (Interconnect Resources)

 FPGA’in dış dünya ile bağlantısını 
sağlayan ve programlanabilen giriş-
çıkış birimleri (I/O Elements)

 FPGA’deki programlanabilir bağlantılar, temel bir satır ve sütun (bağlantısı)
üzerinden ayarlanır.

 FPGA’ler, sayısal devrelerin gerçekleştirilmesi ve test edilmesi için geliştirilen 
programlanabilir yongalardır.



2. FPGA İÇYAPISI VE ÖZELLİKLERİ
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 Programlanabilir mantık blokları (Configurable Logic Blocks  CLB),
FPGA’lerin temel yapısını teşkil eder.

 Bu yapılarda bir veya birkaç adet doğruluk tablosu (Look Up Table 
LUT), çoklayıcı (multiplexer) ve saklayıcı (flip flop) mevcuttur.



2. FPGA İÇYAPISI VE ÖZELLİKLERİ
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Mantıksal işlemler bu birimlerde gerçekleştirilir ve her üretici firma mantık
bloklarını farklı isimlendirmektedir.

 Xilinx firması mantık bloklarını mantık hücresi (logic cell) olarak
isimlendirirken, Altera firması bu birimleri mantık elemanı (logic element)
olarak adlandırır.



2. FPGA İÇYAPISI VE ÖZELLİKLERİ

6

 Programlanabilir mantık blokları, minimum terimler kanonik açılımı
(çarpımların toplamı) temelli çalışır.

 Bu teorem SOP (Sum of Products) olarak da bilinir.



2. FPGA İÇYAPISI VE ÖZELLİKLERİ
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 LUT yapısında lojik seçim
birimi ve hafıza hücreleri yer
almaktadır.

 Buna göre;

 Giriş değişken sayısı ‘n’
olarak belirtilirse, LUT’ da
bulunan hafıza hücrelerinin
sayısı 2n olacaktır.

 3 girişli bir LUT örneği
yan tarafta görüldüğü
gibidir.

Belirli bir SOP çıkışı için programlanan 
LUT yapısı örneği



2. FPGA İÇYAPISI VE ÖZELLİKLERİ
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Hafıza hücrelerindeki herbir
‘0’ terimin kullanılmadığını
belirtir ve herbir ‘1’ ise
terimin SOP çıkışında
olacağını gösterir.

 Buna göre 3 girişe karşılık,
8 farklı hafıza hücresi
olmalıdır.

 SOP çıkışı ise 8 terime kadar
farklı durumu barındırabilir.



2. FPGA İÇYAPISI VE ÖZELLİKLERİ
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 Örnek içinde etkin SOP çıkışı,
hafıza hücrelerinin durumuna göre

şeklinde elde edilir.
𝑨ଶ𝑨ଵ𝑨଴ ൅ 𝑨ଶ𝑨ଵ𝑨଴ ൅ 𝑨ଶ𝑨ଵ𝑨଴ ൅ 𝑨ଶ𝑨ଵ𝑨଴



2. FPGA İÇYAPISI VE ÖZELLİKLERİ
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 FPGA içindeki mantık blokları 4 farklı işlevde programlanabilmektedir:

 Normal mod

 Genişletilmiş LUT modu

Aritmetik mod

 Paylaşılan aritmetik mod

 Bir mantık bloğu, bu dört moda ek olarak sayıcı ve ötelemeli register
oluşturmak için bir register dizisi olarak kullanılabilir.

 Normal mod, ilk olarak kombinasyonel lojik fonksiyonların üretilmesi için
kullanılır.

 Bir mantık bloğu; iki adet LUT birimi ile bir veya iki kombinasyonel çıkış
fonksiyonu sağlayabilir.



2. FPGA İÇYAPISI VE ÖZELLİKLERİ
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 Bir mantık bloğu; iki adet 
LUT birimi ile bir veya iki 
kombinasyonel çıkış 
fonksiyonu sağlayabilir.

 Normal mod kullanımı şu 
kurallara bağlıdır;

 Herbir mantık bloğunda, 
LUT’lardaki girişlere göre iki 
farklı SOP çıkışı elde edilebilir. 

(4+3’lük iki LUT içeren mantık 
bloğunda SOP1 = 𝑨𝟑𝑨𝟐𝑨𝟏𝑨𝟎, 
SOP2 =𝑨𝟐𝑨𝟏𝑨𝟎 gibi)



2. FPGA İÇYAPISI VE ÖZELLİKLERİ
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 Normal mod kullanımı şu
kurallara bağlıdır;

 Bir LUT çıkışında en fazla 6
değişkenli terim bulunabilir.
Diğer bir deyişle, bir LUT
yapısı en fazla 6 girişe sahip
olabilir.

(SOP1 = 𝑨𝟓𝑨𝟒𝑨𝟑𝑨𝟐𝑨𝟏𝑨𝟎 gibi)



2. FPGA İÇYAPISI VE ÖZELLİKLERİ
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 Normal mod kullanımı şu
kurallara bağlıdır;

 Her iki LUT girişlerine totalde 
maksimum 8 değişken 
sunulabilir. 

(𝑨𝟕, … , 𝑨𝟏 𝑨𝟎)
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 Normal mod kullanımı şu 
kurallara bağlıdır;

 Genelde 4 veya daha az 
değişken içeren iki SOP 
fonksiyonu (toplamda 8 farklı 
veya daha az sayıda giriş 
değişkeni içeren iki LUT) için 
LUT’larda girişlerin 
paylaşımına gerek duyulmaz.

 Ancak ortak kullanılacak 
değişken var ise paylaşım 
gerekir.
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 Normal mod kullanımı şu 
kurallara bağlıdır;

Örneğin; iki 4-değişkenli 
fonksiyon = 4+4 iki LUT, 

bir 4-değişkenli ve bir 3-değişkenli 
fonksiyon = 4+3 iki LUT, 

bir 3-değişkenli ve bir 3-değişkenli 
LUT = 3+3 iki LUT

Diğer bir deyişle, 5 ve üzeri 
değişkenin kullanılacağı bir LUT 
için diğer LUT girişi kontrol 
edilmeli, toplam giriş sayısı 8’ i 
geçerse paylaşım yapılmalıdır.
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 Normal mod kullanımı şu 
kurallara bağlıdır;

 Giriş paylaşımı yapıldığında 
maksimum 8 farklı girişi 
destekleyecek farklı 
kombinasyonlarda bağlantı 
yapılabilir. 

 Paylaşım yapıldığında herbir
LUT yapısında maksimum 6’ şar 
terimli fonksiyonlar (6+6 iki LUT) 
kullanılabilir.
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Örnek 2.1: Normal modda işletilen bir mantık bloğunda, çıkışta 5-değişkenli
(A4,A3,A2,A1,A0) ve 3-değişkenli (A7,A6,A5) terimlerin üretileceği SOP
fonksiyonu için gerekli şemayı çiziniz, çalışma prensibini kısaca izah ediniz.

• İstenilen giriş değişkeni 
sayısı toplamda 8 olduğundan 
ve her SOP çıkışında farklı 
değişken çarpımları 
sağlanacağından, LUT’lar
arası giriş paylaşımı 
yapılması zorunlu değildir. 

A0
A1
A2
A3
A4

A5
A6
A7
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Genişletilmiş LUT modu, giriş paylaşımı yapılan 5+5 iki LUT ve bir harici
giriş kullanarak, 7 farklı giriş değişkeninin işletildiği özelleşmiş bir seçenektir.

Genişletilmiş moddaki mantık bloğu

 Harici giriş normal ve
tümleyen olarak herbir
LUT çıkışındaki terimler
ile çarpılmaktadır.

 Herbir AND kapısı
çıkışında normal modda
olduğu gibi en fazla 6
değişkenli terim içeren
fonksiyonlar yer alır.
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Örnek 2.2: Blok çıkışı = 
𝑨𝟓𝑨𝟒𝑨𝟑𝑨𝟐𝑨𝟏𝑨𝟎 ൅
𝑨𝟓𝑨𝟒𝑨𝟑𝑨𝟐𝑨𝟏𝑨𝟎 ൅
𝑨𝟓𝑨𝟒𝑨𝟑𝑨𝟐𝑨𝟏𝑨𝟎 ൅
𝑨𝟔𝑨𝟓𝑨𝟒𝑨𝟑𝑨𝟐𝑨𝟎 ൅
𝑨𝟔𝑨𝟓𝑨𝟒𝑨𝟑𝑨𝟐𝑨𝟎 ൅
𝑨𝟔𝑨𝟓𝑨𝟒𝑨𝟑𝑨𝟐𝑨𝟎 olarak 
elde edilmek istendiği 
durumda; genişletilmiş 
mod mantık bloğu için 
herbir LUT çıkışındaki 
SOP fonksiyonlarını 
belirtiniz. 
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 FPGA yapılarında farklı programlama teknolojileri kullanılabilmektedir.
Bunlar;

 SRAM (Static RAM) tabanlı

 SRAM / Flash tabanlı

Anti-fuse tabanlı

 EPROM / EEPROM tabanlı

 Flash tabanlı olarak sıralanabilir.

 En sık kullanılanı SRAM, yani Durağan Rasgele Erişimli Bellek (SRAM
 Static Random Access Memory) teknolojisi tabanlı FPGA yapılarıdır.

 Bu yapılarda, CLB bloklarına yazılan program verisi enerji kesildiği
durumda kaybolur.
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 SRAM tabanlı FPGA türlerinde iki farklı program verisi kaydetme seçeneği
vardır:

Yonga üzerine yerleşik 
kalıcı yapılandırma 
belleğinin mantığı

Yonga üzerine 
yerleştirilmiş bir 
kalıcı yapılandırma 
belleği, program 
verisini saklamak 
ve enerji verildiği 
durumda cihazı 
yeniden 
düzenlemek için
kullanılır.
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 SRAM tabanlı FPGA türlerinde iki farklı program verisi kaydetme seçeneği
vardır:

Yonga üzerine yerleştirilmiş bir kalıcı yapılandırma belleği, program
verisini saklamak ve enerji verildiği durumda cihazı yeniden düzenlemek
için kullanılır.

 Harici bellek birimi ile veri transferinin kontrolünü sağlayan ana
işlemci kullanılır.

FPGA’ de ana işlemcinin 
geçici birimler ve kalıcı 
yapılandırma belleği ile 

ilişkisi
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 FPGA yapıları, son kullanıcı tarafından her türlü mantıksal tasarımın
programlanabileceği boş bir sayfa olarak görülebilir.

 Bazı FPGA türleri sert çekirdek (hard-core) tasarımları içerir. Bu tasarımlar
FPGA içindeki lojik bir bölümdür ve üretici tarafından belirli bir
fonksiyonun sağlanması için eklenir.

 Sert çekirdek tasarım yeniden programlanamaz.

Örneğin; bir müşteri sistem tasarımının bir bölümünde küçük bir
mikroişlemciye ihtiyaç duyarsa, bu birim kullanıcı tarafından
programlanabilir veya üretici tarafından sert çekirdek tasarım olarak
FPGA içine eklenebilir.

 Eğer gömülü fonksiyon programlanabilir özelliklere sahipse, bu tasarım
yumuşak çekirdek (soft-core) olarak bilinir.



2. FPGA İÇYAPISI VE ÖZELLİKLERİ

24

 Sert çekirdek yaklaşımın temel avantajları;

 kullanıcı tarafından sahada programlanacağı kapasiteden daha az
kapasite ile bir fonksiyonun programlanması,

 yonga üzerinde daha az yer harcanması,

 daha kısa sürede temin olarak sıralanabilir.

 Sert çekirdek yaklaşımının temel dezavantajı ise teknik özelliklerin üretim
esnasında sabit olması ve kullanıcının üretilecek yapıya müdahale
edemeyecek şekilde (olduğu gibi) kullanması zorunluluğudur. Çünkü bu
yapılarda yeniden düzenleme opsiyonu yer almaz.

 Sert çekirdek tasarımlar, genelde sık kullanılan dijital sistemler
(mikroişlemci, standart giriş / çıkış birimleri, dijital sinyal üreteçleri, v.b.
yapılar) için mevcuttur.

 Birden fazla sert çekirdek fonksiyonu FPGA içinde yer alabilmektedir.
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 Şekilde kullanıcı tarafından programlanabilen mantık birimleri ile çevrelenmiş
sert çekirdek yaklaşımı görülmektedir.

 Bu örnek, temel seviye bir gömülü sistemdir. Çünkü sert çekirdek fonksiyonu
kullanıcı tarafından programlanabilen mantık birimleri içine yerleştirilmiştir.

FPGA içine 
yerleştirilmiş sert 

çekirdek mantığının 
temel hali
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 Sert çekirdek tasarımların geliştirilmesi ve fikri mülkiyeti FPGA üreticisine
aittir.

 Üretici tarafından geliştirilen tasarımlar ise fikri mülkiyet (IP  Intellectual
Property) olarak bilinir.

 FPGA üretici firma, IP dâhilindeki birimlerin tiplerini kendi web sitesinde
paylaşır.

 IP birimler yalnızca sert çekirdek tasarımları içermez, aynı zamanda bu
tasarımların yumuşak çekirdek tasarımlar ile birleştirildiği durumlar da bulunur.

 Parametre seçimi ve ayarlaması esnek olabilen bir işlemci birimi bu duruma
örnek olarak verilebilir.
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 FPGA, gömülü bellek fonksiyonlarının yanısıra dijital sinyal işleme (DSP 
Digital Signal Processing) fonksiyonlarını barındırır.

FPGA blok 
diyagramı 

(akış şeması)
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 DSP fonksiyonları; dijital filtreler, sinyal işleme ve kontrol sistemleri gibi birçok
uygulamada kullanılmaktadır.

FPGA blok 
diyagramı 

(akış şeması)
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 Gömülü bloklar FPGA arabağlantı matrisi içinde baştan sona bulunur ve giriş /
çıkış birimleri (IOEs Input / Output Elements) FPGA dış bölümünü sarmaktadır.

FPGA blok 
diyagramı 

(akış şeması)
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 LABs (Logic Array Blocks) birimleri ise CLB yapılarının bir araya getirilmesi
ile elde edilir.

FPGA blok 
diyagramı 

(akış şeması)
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 Başlıca FPGA üreticileri;

 Xilinx,

Altera,

 Lattice,

Microsemi,

 Quicklogic,

 SiliconBlue firmalarıdır.

 Bu firmalardan pazarın büyük çoğunluğuna sahip olanlar Xilinx ve Altera
firmaları olarak bilinir.

 Xilinx firması FPGA’ yı ilk üreten ve şu anda dünyadaki en büyük FPGA
üreticisi olan şirkettir.
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3. VHDL’ E GİRİŞ
 VHDL, Yüksek Hızlı Tümleşik Devre Donanım Tanımlama Dili (Very
High Speed Integrated Circuit Hardware Description Language) olarak bilinir.

 VHDL, donanım parçalarını modellemek için kullanılır.

 VHDL’in yanısıra kullanılan bir diğer donanım tanımlama dili de
Verilog’dur.

2

VHLD Verilog 
Ada diline benzer C diline benzer 

Tasarımcı kendi veri yapılarını tanımlayabilir Veri yapıları önceden belirlidir ve yeni veri yapısı 
tanımlanamaz 

Tasarlanan prosedür ve fonksiyonlar kütüphaneye 
dönüştürülerek kullanılabilir Paket ve kütüphane yapıları bulunmaz 

I/O bağlantıları ve devrenin işleyişi ayrı bloklar 
olarak yazılır 

I/O bağlantıları ve devrenin işleyişi aynı blok içinde 
tanımlanmalıdır 



3. VHDL’ E GİRİŞ
 VHDL programlama dilinde kütüphane ve paket yapılarının
oluşturulabilmesi, karmaşık sistemlerin modellenmesini ve yönetimini
kolaylaştırır.

 Bu nedenle karmaşık sistem tasarımlarında daha çok VHDL dili kullanılır.

 Verilog dili öğrenilmesi daha kolay olduğundan genelde başlangıç
seviyesinde programcılar tarafından tercih edilir.

 VHDL dili ABD Savunma Bakanlığı tarafından geliştirildiğinden daha
bürokratik bir yapıdadır ve kütüphane geliştirme imkânı sunduğundan ileri
seviye tasarımcılar tarafından tercih edilir.

3



 VHDL tasarım metodolojileri 4 alt başlıkta incelenir. Bunlar; soyutlama,
modülerlik, hiyerarşik tasarım ve modelleme teknikleri şeklinde sıralanır.

4

3.1 VHDL Tasarımda Metodolojiler

 Günümüzde çok karmaşık olan ve fazlaca eleman içeren yongaların
doğrudan işlenmesi zorlaşmaktadır.

 Bu karmaşıklığı daha kolay yönetebilmek adına çeşitli soyutlama seviyeleri
ve bu seviyelere dair ana hatlar belirlenmiştir.

 Soyutlama, tasarımdaki gereksizlikleri atmak ve veriyi yönetilebilir
seviyede tutmak için kullanılır.

3.1.1 Soyutlama
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 Soyutlama ile komplike sistemler daha basit bir modele indigenebilir.

3.1.1 Soyutlama

Soyutlama 
Seviyeleri
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Yüksek seviye soyutlama çok önemli veriler üzerine yoğunlaşırken, düşük
seviye soyutlama ayrıntı içerir ve önceki aşamalarda göz ardı edilen bilgiler
gereklidir.

3.1.1 Soyutlama

Yüksek seviye soyutlama 
için gerekli tasarım, düşük 
seviye soyutlamadaki 
tasarımdan daha hızlıdır.

 Düşük seviye 
soyutlamada tasarlanan 
yapılar daha karmaşıktır, 
ancak bu seviye temelli 
oluşturulan devreler 
tasarlanması gereken 
devreye daha yakındır ve 
daha doğru sonuç üretir. 
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3.1.1 Soyutlama

 Ayrıntılı sistem tasarlanırken 
ilk olarak;
 yüksek seviye 
soyutlamadan giriş yapılır,

 sistemdeki 
vazgeçilemezler belirlenir,

 sistem daha iyi 
anlaşıldıkça detaylar 
artırılarak düşük seviye 
soyutlamaya gidilir.
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Davranışsal Seviye: Modelin fonksiyonel
tanımı yapılarak ana hatları belirtilir.

 Saat (Clock) sinyalinin kullanılmadığı
durumda sinyal geçişleri asenkron olacaktır ve
bu geçişler anahtarlama zamanına bağlıdır.

3.1.1 Soyutlama

Davranışsal Seviye Örneği

 Davranışsal modelleme, devre davranışını tanımlamada en basit yoldur.

 Davranışsal seviye içinde tanımlanan tasarımlar simülasyon amaçlı işletilir.

 Bu tasarımların içinden yalnızca çok basit olanları sentezlenebilir.
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Davranışsal Seviye: Davranışsal seviye çok
büyük tasarımlar için mümkün görülmez.

3.1.1 Soyutlama

Davranışsal Seviye Örneği

Ancak, veri yolu (Bus) sistemleri veya karmaşık algoritmalar
sentezlenebilirlik kaygısı olmadan tanımlanabilir.

 Test bench’ de hafıza birimleri içeren bir modelin simülasyonu için giriş
(uyarıcı) tanımlamalarının belirlenmesi davranışsal seviye tasarıma
örnektir.
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RT Seviyesi (RTL): RTL (Register Transfer Level), saat işaretine göre veri
aktarımı yapan ardışıl devreler ile bu devreleri destekleyen
kombinasyonel lojik yapıların tanımlandığı tasarım düzeyidir.

 Toplayıcı ve karşılaştırıcı gibi fonksiyonel birimleri, register gibi hafıza
birimlerini ve çoklayıcı gibi veri seçici elemanları içerir.

3.1.1 Soyutlama

 RTL seviyesinde verinin nasıl işleneceği ve iletimin nasıl sağlanacağı
belirlenir.

RTL Genel Gösterimi
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RT Seviyesi (RTL): RTL seviyesinin en önemli noktası tasarlanan yapı
içinde ortak clock sinyaline göre işlem yapılmasıdır.

 Bu noktada veri sinyalleri yalnızca clock sinyalinin tetik kenarında
işleme tabi tutulur.

 Bu nedenle bu seviyede, asenkron sistemlerde ardışıl bağlanan hafıza
birimlerinde olduğu gibi büyük sinyal gecikmeleri meydana gelmez,
ayrıca anlık atlamalar (glitch) gerçekleşmez.

3.1.1 Soyutlama

RTL Genel Gösterimi
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RT Seviyesi (RTL): RT seviyesindeki bir simülasyon için tek bir clock
periyodu işletildiğinde, bütün sinyallerin denge değerlerine ulaşıp
ulaşmadığı hakkında kesin bir şey söylenemez.

Yani bu seviyede yapılan simülasyonlar, sistemin gerçek zamanlama
davranışı ile ilgili bilgi vermez.

 Diğer bir deyişle, yalnızca sisteme dair senkron davranış modellenir.

3.1.1 Soyutlama

RTL Genel Gösterimi
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RT Seviyesi (RTL): VHDL’de fonksiyonel davranışlar process ile
modellenir.

 RT seviye tasarımda kombinasyonel ve saatli (clock içeren) olmak üzere
iki tip process mevcuttur.

3.1.1 Soyutlama

RTL Genel Gösterimi
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Mantık Seviyesi: Mantık seviyesinde amaçlanan tasarım, lojik kapılar ve
hazıfa (depolama) elemanlarından oluşan bir ağ yapısı şeklindedir.

 Herhangi bir tasarım mantık seviyesinde nitelendiğinde, tasarımda
kullanılan kapı gecikmeleri simülasyona uygulanabilir.

3.1.1 Soyutlama

Mantık Seviyesi Örneği
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Donanım Düzeni (Layout) Seviyesi: Soyutlamanın en alt kısmı donanım
düzeni seviyesidir.

 Bu seviyede gerekli tasarım farklı hücreler üzerine aktarılır ve hücreler
arasındaki bağlantılar yapılır.

 Donanım düzeni tamamlandıktan sonra devre üretime hazır hale gelir.

3.1.1 Soyutlama

Layout Seviyesi Örneği
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Donanım Düzeni (Layout) Seviyesi: Donanım düzeninin tasarlanması
sonrası bağlantı uzunlukları, yani sinyallerin gecikmeleri belirlenir.

Mantık birimlerindeki gecikmelerin hesaba katılmasından sonra bütün
devrenin zamanlama davranışı bulunur.

3.1.1 Soyutlama

Layout Seviyesi Örneği
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Modülerlik, büyük bir tasarımın alt parçalara (birimlere) ayrılarak ele
alınması ve programlanması anlamına gelir.

 Bu tip tasarıma modüler tasarım denilir.

 VHDL kapsamında oluşturulan modüler tasarımlar, hem kolay tasarım
yapılmasını hem simülasyonun kolaylaştırılmasını hem de eşzamanlı
farklı kullanıcıların çalışabilmesini sağlar.

3.1.2 Modülerlik

 Tasarlanacak olan büyük bir sistemin alt modüllerden oluşmasını sağlar
(modülerliğin tümleşmiş halidir).

3.1.3 Hiyerarşik Tasarım
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 Tasarım hiyerarşisinin her ayrı bölümü farklı bir soyutlama seviyesinde
modül içerebilir.

 Böylelikle tasarım daha kolay yönetilebilir hale gelir.

 Hiyerarşik tasarım, hem yazılımcılar hem de donanımcılar tarafından
kullanılır.

 Hiyerarşik tasarım ve modülerlik; VHDL içindeki kütüphane, bileşen ve
paket kavramları üzerinden sağlanır.

3.1.3 Hiyerarşik Tasarım
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 VHLD tasarım kapsamında temel olarak üç tip modelleme tekniği
mevcuttur:

1-) Veri akış (Dataflow),
2-) Davranışsal (Behavioral),
3-) Yapısal (Structural).

3.1.4 Modelleme Teknikleri

 Veri akış (Dataflow) modeli, sistemin girişine sunulan bir sinyalin çıkışa
kadarki eş zamanlı akışını modelleyen tasarım tekniğidir.

 Bu model alt tasarım düzeyi olmaktadır ve devredeki AND, OR, XOR gibi
yerleşik bileşenler arası giriş çıkış bağlantıları gösterilerek modelleme
yapılmaktadır.
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 VHLD tasarım kapsamında temel olarak üç tip modelleme tekniği
mevcuttur:

1-) Veri akış (Dataflow),
2-) Davranışsal (Behavioral),
3-) Yapısal (Structural).

3.1.4 Modelleme Teknikleri

 Davranışsal modellemede geliştirilecek olan modelin giriş ve çıkış ilişkisi
(işlevi) davranışsal olarak ele alınır.

 Diğer bir deyişle, sistem çıkışlarının girişlere verdiği tepki modellenir
ve modele dair iç yapı (kapı vb. eleman bağlantıları) önemsenmez.

 Veri-akış modeline göre daha üst tasarım teşkil eder. Bu nedenle for,
case ve if gibi komutlar bu modelde işletilir.
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3.1.4 Modelleme Teknikleri

 Yapısal modellemede ise bütün bir tasarımın, farklı görevleri içeren alt
modüllerden meydana geldiği düşünülür.

 VHLD tasarım kapsamında temel olarak üç tip modelleme tekniği
mevcuttur:

1-) Veri akış (Dataflow),
2-) Davranışsal (Behavioral),
3-) Yapısal (Structural).

Yapısal tasarım 
modelinde alt 

modüllerin 
kullanımı
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3.1.4 Modelleme Teknikleri

 Bu modüller bir araya getirilerek büyük ve karmaşık sistem tasarımı
sağlanır.

 VHLD tasarım kapsamında temel olarak üç tip modelleme tekniği
mevcuttur:

1-) Veri akış (Dataflow),
2-) Davranışsal (Behavioral),
3-) Yapısal (Structural).

Yapısal tasarım 
modelinde alt 

modüllerin 
kullanımı
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3.1.4 Modelleme Teknikleri

 Davranışsal ve / veya veri-akış modeli kullanılarak üretilen alt birimlerin
yapısal birleştirilmesi, yapısal modelleme kapsamında ele alınır.

 VHLD tasarım kapsamında temel olarak üç tip modelleme tekniği
mevcuttur:

1-) Veri akış (Dataflow),
2-) Davranışsal (Behavioral),
3-) Yapısal (Structural).

Yapısal tasarım 
modelinde alt 

modüllerin 
kullanımı
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3.1.4 Modelleme Teknikleri

 VHDL tasarımda genel olarak her bir alt birim (modül) davranışsal
modelleme ele alınarak tasarlanır ve bütün modüller yapısal modelleme
kullanılarak birbirine bağlanır.

 VHLD tasarım kapsamında temel olarak üç tip modelleme tekniği
mevcuttur:

1-) Veri akış (Dataflow),
2-) Davranışsal (Behavioral),
3-) Yapısal (Structural).

Yapısal tasarım 
modelinde alt 

modüllerin 
kullanımı
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3.1.4 Modelleme Teknikleri

 VHLD tasarım kapsamında temel olarak üç
tip modelleme tekniği mevcuttur:

1-) Veri akış (Dataflow),
2-) Davranışsal (Behavioral),
3-) Yapısal (Structural).

Yapısal tasarım 
modelinde alt 

modüllerin 
kullanımı

ÖZETLE

Eş zamanlı (paralel) 
işletilecek kod ile 

tasarımdır

Ardışıl (sıralı) + Eş zamanlı (paralel)
işletilecek kod temelli tasarımdır

Birden fazla veri akış ve/veya 
davranışsal tasarımın 

birleştirilmesidir. 
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4- VHDL TASARIM BÖLÜMLERİ



Ders sorumlusu:

Doç. Dr. Hasan KOYUNCU

1



4. VHDL TASARIM BÖLÜMLERİ
 VHDL dilinde 3 ayrı ana tasarım yapısı mevcuttur. Bunlar; varlık (entity),
mimari (architecture) ve kütüphane (library) şeklindedir.

 Bu bölümlere ek olarak, bazı kaynaklarda konfigürasyon bölümü ayrı bir
başlıkta ele alınır.

 Library: Halihazırda mevcut olan veya kullanıcı tarafından hazırlanan
tanımlamaların gruplandığı yapıdır. Bu tanımlama grupları (kütüphaneler
veya paketler) ihtiyaca göre tanımlanır ve kullanılır.

 Entity: Tasarımın dış çevresi ile bağlantı arayüzünü oluşturur. Bu kısımda
giriş ve çıkış portları belirtilir.

 Architecture: Modele dair davranışın tanımlandığı bölümdür.

 Konfigürasyon: Alt modüllerin bir araya gelerek bütün bir sistem
tasarımının nasıl oluşturulduğunu gösteren bölümdür.

2
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 Varlık (Entity) bildirimi, tasarlanacak sisteme dair giriş ve çıkış
birimlerinin belirtildiği bölümdür.

 VHDL tasarımlarda yalnızca bir adet entity tanımlanır ve bu tanımlama
kütüphane (paket, library) tanımlaması sonrasında yapılır.

Aynı entity tanımlaması üzerinden birden fazla architecture ve
konfigürasyon tanımlaması yapılabilir.

 Port olarak isimlendirilen ve sistemin dış çevresi ile bağlantısını oluşturan
girdi ve çıktı birimlerinin tanımlamaları entity bölümünde verilir.

 Portlar; giriş, çıkış, hem giriş hem çıkış veya tampon olacak şekilde dört
farklı formatta tanımlanır.

4.1 Varlık (Entity)



 in: Sisteme dışarıdan gelen sinyalleri tanımlarken kullanılır ve yalnızca
okuma yapılabilen port tanımlamasıdır.

 out: Sistemden çıkış yapacak olan sinyalleri tanımlarken kullanılır ve
yalnızca yazma yapılabilen port tanımlamasıdır.

 inout: Sisteme hem giriş hem de çıkış yapacak olan sinyaller için kullanılan
port tanımlamasıdır.

 buffer: out portu gibi davranır ve bu porttan farklı olarak sistem içinde
okuma yapılabilir.

4

4.1 Varlık (Entity)



 Jenerik (Generic) ise entity’ ye ait bazı parametreler için sistem bileşenleri
üzerine kod bölümünde kolaylık sağlayan tanımlamadır.

 Statik bilgi (sabit değer) sağlayan tanımlamalardır.

 Generic tanımlaması entity içinde port bilgisinden önce verilir ve yazılan
tanımlama entity ve entity’ nin ilişkili olduğu architecture bölümlerinde
kullanılabilir.

 Generic’ lere dair kullanımlardan bazıları şunlardır:
 Port boyutlarının ifadesi
Alt bileşen sayısının nitelenmesi
 Zamanlama özellikleri
 Tasarıma dair fiziksel özellik tanımlamaları
Architecture içinde belirtilecek vektörlerin uzunluk tanımlamaları
 Döngü sayısı atanması 5

4.1 Varlık (Entity)



 Entity yapısının gösterimi şu şekildedir:

6

4.1 Varlık (Entity)

Örnek 4.1: Yapısında clock ve reset sinyal girişleri, 16 bitlik sayı girişi ve 8’ er
bitlik iki sayı çıkışı için port tanımlamasının yapıldığı entity kodunu yazınız.

Entity Uyg1 is 
     Port (clk: in   std_logic; 
               rst: in   std_logic; 
               sayi_16b: in   std_logic_vector(15 downto 0); 
               sayi1_8b: out   std_logic_vector(7 downto 0); 
               sayi2_8b: out   std_logic_vector(7 downto 0)); 
End Uyg1; 

Entity entity_ismi is 
     Generic (jenerik_arayüz_listesi); 
     Port (port_ismi: mod tür; 
             diğer portlar…); 
End entity_ismi; 
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4.1 Varlık (Entity)

Örnek 4.2: giris1, giris2 ve secim isimli üç giriş portu ile sonuc isimli bir çıkış
portuna sahip 2x1 MUX için entity tanımlaması yapınız.

Örnek 4.3: 16 bitlik adres giriş bilgisi gerektiren RAM için, generic
tanımlamasını adres bit sayısı üzerinden belirterek gerekli entity kodunu yazınız.

Entity mux_birimi is 
     Port (giris1:  in   std_logic; 
              giris2:  in   std_logic; 

  secim:  in   std_logic; 
  sonuc:  out   std_logic); 

End mux_birimi; 

Entity Ram_birimi is 
     Generic (adres_boyut: integer := 16); 
     Port (adres:  in  std_logic_vector(adres_boyut-1 downto 0); 
End Ram_birimi; 
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4.1 Varlık (Entity)
Entity kodu yazılırken bazı kurallar mevcuttur:

1. Entity ismi bütün bir tasarımın ismidir ve bir harfle başlamak koşuluyla
harf, alt çizgi ve rakam içerebilir.

2. Bir generic, port veya pasif ifade kullanmadan yalın halde entity
tanımlaması yapılabilir.

3. Aynı tür ve port tanımlaması (modu) aynı olan tanımlamalar, birbirlerinin
arasına virgül (,) konularak yapılır. Herbir port tanımlaması noktalı virgül (;)
ile ayrılır.

Entity elevator_control is 
     Port (yukari, asagi, dur, acil:  in std_logic; 
              yon_kontrol, diger_islem:  out  std_logic); 
End elevator_control; 
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4.1 Varlık (Entity)
Entity kodu yazılırken bazı kurallar mevcuttur:

4. Sistem tasarımına bağlı olarak entity kodunda tür, alt tür ve sabitler
tanımlanabilir. Tanımlı ifadeler ise entity’ ye bağlı olan bütün architecture
bölümlerinde kullanılabilir.

5. Entity tanımlaması kütüphane tanımlaması sonrası yapılır.

Entity deneme is 
     Port (A, B, C, D:  in std_logic; 
              E, F:  out  std_logic); 
              signal deg1: std_logic; 
              constant deg2: integer :=20; 
End deneme; 

Library ieee; 
Use ieee_std_logic_1164.all 
 
Entity demux_1 is 
     Port (A, sel:  in std_logic; 
              B, C:  out  std_logic); 
End demux_1; 
 

;
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4.1 Varlık (Entity)

Örnek 4.4: 16 bitlik adres giriş bilgisi gerektiren RAM için, generic
tanımlamasını adres bit sayısı üzerinden belirterek gerekli entity kodunu
yazınız.

Entity RAM_birimi is 
     Generic (adres_boyut: integer :=16); 
     Port (adres_bilgisi : in  std_logic_vector(adres_boyut-1 downto 0); 
End RAM_birimi; 
 

4.2 Mimari (Architecture)

Mimari (Architecture) bildirimi, tasarıma dair gerçekleştirilecek işin
tanımlandığı bölümdür.

 Diğer bir deyişle, tasarım davranışının ve iç yapısının tasarlandığı
bölümdür.
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4.2 Mimari (Architecture)

Ayrıca modellemede sıralı veya paralel işlem tiplerinden hangisinin
kullanacağı da bu bölümde belirtilir.

 Architecture kodu genelde dört farklı şekilde yazılabilir: 1-Veri akış, 2-
Yapısal, 3-Davranışsal, 4-Karma.

 Architecture yapısının gösterimi şu şekildedir:

Architecture architecture_ismi of entity_ismi is 
     bildirimler (sinyal, değişken vb. tanımlamalar) 
Begin 
     architecture gövdesi 
End architecture_ismi; 

;
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4.2 Mimari (Architecture)

Örnek 4.5: Yan tarafta görülen devre için
gerekli VHDL kodunu yazınız.

Architecture kodu aşağıdaki 
gibi ara bağlantı kullanmadan 
da yazılabilir. 

cikis1 <= (giris1 and giris2) or
giris3;

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity tumlesik_devre is  
Port (giris1, giris2, giris3: in std_logic; 
          cikis1: out std_logic); 
End tumlesik_devre; 
 
Architecture icyapi of tumlesik_devre is 
     signal ara1: std_logic;  
Begin 
     ara1 <= giris1 and giris2; 
     cikis1 <= ara1 or giris3; 
End icyapi; 
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4.2 Mimari (Architecture)

Örnek 4.5: Yan tarafta görülen devre için
gerekli VHDL kodunu yazınız.

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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Architecture kodu yazılırken bazı kurallar mevcuttur:

1. Bütün architecture yapısının tek ismi olur ve bu isim architecture ifadesi
sonrası yazılır.

Architecture ismi sonrasında sırasıyla ‘of’ ifadesi ve entity ismi
belirtilmelidir.

 Bütün bir architecture tanımının yapıldığı satır ‘is’ ifadesi ile sonlandıktan
sonra kod tanımlamalarına giriş yapılır.

Architecture icyapi of tumlesik_devre is 

4.2 Mimari (Architecture)
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Architecture kodu yazılırken bazı kurallar mevcuttur:

2. İlk satır (architecture tanımının yapıldığı satır) sonrasında begin
(başlangıç) komutuna kadar çeşitli tanımlamalar (sinyal, değişken, sabit, alt
program, bileşen ve veri türü gibi tanımlamalar) yapılır.

Ara değer atamasında kullanılacak olan ara sinyal tanımlamaları,
architecture ilk satırı sonrasında begin komutuna kadar olan bölümde
yapılmalıdır.

4.2 Mimari (Architecture)

3. Begin ve end komutları arası tasarım
tanımlama bölümüdür. Bu bölümde
sinyal atamaları, process ve bileşen
çağrılması gibi işlemler gerçekleştirilir.

signal ara1: std_logic; Begin 
     ara1 <= giris1 and giris2; 
     cikis1 <= ara1 or giris3; 
End icyapi 
 

;
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Architecture kodu yazılırken bazı kurallar mevcuttur:

4. Architecture içinde tanımlanan bütün işlem ve ifadeler (sıralı komutlar
hariç) eş zamanlı işletilir.

5. Architecture bittiğinde (begin komutunun karşılığı olarak) end komutu
kullanılır ve bu komut sonrası başta tanımlanan architecture ismi yazılır.

4.2 Mimari (Architecture)

6. Her architecture yapısının bir entity’ ye bağlı olması gerekir.

 Bir entity birden fazla architecture içerebilir, ancak tersi durum söz konusu
değildir.

End icyapi; 
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Architecture kodu yazılırken bazı kurallar mevcuttur:

6. Her architecture yapısının bir entity’ ye bağlı olması gerekir.

 Bir entity birden fazla architecture içerebilir, ancak tersi durum söz konusu
değildir.

 Bu durumda ise herbir architecture isminin farklı olması gerekir.

 Kısaca bir architecture yalnızca tek bir entity ile ilişkili olabilir.

 burada architecture ismi icyapi, bağlı olduğu entity ise tumlesik_devre
olarak görülür.

4.2 Mimari (Architecture)

Architecture icyapi of tumlesik_devre is 
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4.2 Mimari (Architecture)

Örnek 4.6: Girişe 
gelen 16 bitlik 
sayıyı iki parçaya 
bölen, clk ve rst
sinyallerine göre 
işlem yapan tasarım 
için gerekli VHDL 
kodunu yazınız.

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity Uyg_bolum is  
Port (clk, rst: in std_logic; 
        sayi_16b: in std_logic_vector(15 downto 0); 
        sayi1_8b: out std_logic_vector(7 downto 0); 
        sayi2_8b: out std_logic_vector(7 downto 0)); 
End Uyg_bolum; 
 
Architecture davranis of Uyg_bolum is 
Begin 
    Process (clk, rst) 
    Begin 
        If (rst= '1') then 
              sayi1_8b <= "00000000"; -- veya  sayi1_8b <= (others => '0'); 
              sayi2_8b <= "00000000"; -- veya  sayi2_8b <= (others => '0'); 
        Elsif rising_edge(clk) then 
              sayi1_8b <= sayi_16b(7 downto 0); 
              sayi2_8b <= sayi_16b(15 downto 8); 
        End if; 
   End process; 
End davranis; 
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4.2 Mimari (Architecture)

Örnek 4.6: Girişe gelen 16 bitlik sayıyı iki parçaya bölen, clk ve rst
sinyallerine göre işlem yapan tasarım için gerekli VHDL kodunu yazınız.

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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 Bir tasarım içinde VHDL kaynak kodlarının derlenmesi için Kütüphane
(Library) yapılarına ihtiyaç duyulur.

 Kullanıcı kendisinin tanımlayacağı paket (package) yapıları üzerinden
kendi oluşturacağı kütüphaneyi kullanabileceği gibi, derleyicide mevcut
olan kütüphaneleri de kullanabilmektedir.

 Kütüphanenin kullanıma açılması için library komutu kullanılır.

 Komut sonrası kullanılacak kütüphane ismi belirtilir (Library ieee, vb
gibi).

4.3 Kütüphane (Library)
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Çalışma Kütüphanesi: Bir tasarım kapsamında oluşturulmuş VHDL
kodlarını kapsayan kütüphanedir.

Mevcut tasarım kodları her zaman çalışma kütüphanesinde derlenmektedir.

 Bu nedenle çalışma kütüphanesi halihazırda mevcut olduğundan ayrıca bir
tanımlama ile program içinde belirtilmez.

 Derleyici programda varsayılan kütüphane “work” olarak bilinir.

 Kullanıcı tarafından kullanılabilecek olan paket (package) tanımlamaları
bu kütüphane kapsamında incelenebilir.

4.3 Kütüphane (Library)
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 Veri türleri, alt programlar, sabitler, sinyal ve bileşenler gibi pek çok
tanımlamayı içinde bulunduran genel yapılara paket denir.

 Kullanıcı işletilmesi gereken birçok tanımlamayı paket içerisine
yerleştirerek, bu tanımlamaların bütün modül ve alt modüllerde
kullanılmasını sağlayabilir.

 Paket kullanımı, gerekli tanımlamaların birden fazla kez yapılmasını önler
ve tasarım kolaylığı sağlar.

 Paket yapısı bildirim ve gövde olmak üzere iki alt başlıkta tanımlanır.

4.3 Kütüphane (Library)
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 Paket bildirim bölümünde veri türü tanımlamaları ve çeşitli bildirimler
(sabit, fonksiyon ve prosedür) yapılır.

4.3 Kütüphane (Library)

Package paket_ismi is 
     paket bildirimleri 
End package paket_ismi;

 Paket gövdesi ise alt program tanımlamalarını içermektedir. Bu bölüm
bildirim kısmını basitleştirerek derleme işlemini kolay hale getirir. Yine
fonksiyon ve prosedürler bu bölümde yer alır.

Package body paket_ismi is 
     alt program tanımlamaları 
End package body paket_ismi; 
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4.3 Kütüphane (Library)

Paket Bildirimi 
 
Package deneme is 
     constant katsayi_deg: integer; 
     type hava_durum is (bulutlu,karli,gunesli); 
     Function sayma(k: integer) return integer; 
End package deneme; 
 
Paket Gövdesi 
 
Package body deneme is 
     constant katsayi_deg: integer :=10; 
     Function sayma(k: integer) return integer is 
     Begin 
     …. 
     End sayma; 
End package body deneme; 
 

Paket Oluşturma Örneği
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Standard Kütüphanesi: Standard (Std) kütüphanesi hâlihazırda VHDL
içinde tanımlı bir kütüphanedir ve kullanıcı tarafından tanımlanmasına gerek
yoktur. Ön tanımlı VHDL bileşenlerini içerir.

 Kütüphane kapsamında çeşitli bileşenler mevcuttur. Bu kütüphane iki paket
içerir: 1-Standard, 2-Textio

 Standard başlığı altında bit, boolean, integer gibi basit veri tanımlamaları
ve tanımlamalara dair fonksiyonlar yer alır.

 Textio paketi ise metin dosyası işlemleri kapsamında prosedür, tür ve
fonksiyonları barındırır.

4.3 Kütüphane (Library)
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IEEE Kütüphanesi: Bu kütüphane kapsamında en son ve güncel paket
IEEE Standart 1164 paketidir. Kullanılan paketler ve ilgili özellikler
aşağıdaki gibidir:

Use ieee.std_logic_1164.all : std_logic, std_ulogic, std_logic_vector,
std_ulogic_vector ile ilgili fonksiyonları içerir.

Use ieee.std_logic_arith.all : signed, unsigned, integer, std_ulogic, std_logic
ve std_logic_vector türleri için aritmetik, dönüşüm ve karşılaştırma
fonksiyonlarını kapsar.

Use ieee.std_logic_unsigned.all : işaretsiz aritmetik fonksiyonları kapsar.

Use ieee.std_logic_signed.all : işaretli aritmetik fonksiyonları kapsar.

4.3 Kütüphane (Library)
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Use ieee.math_complex.all : karmaşık sayılarla ilintili fonksiyonları kapsar.

Use ieee.math_real.all : gerçek sayılarla ilintili fonksiyonları kapsar.

Use ieee.numeric_bit.all : bit türünde aritmetik işlem fonksiyonlarını kapsar.

Use ieee.numeric_std.all : std_logic türündeki verilerin aritmetik işlem
fonksiyonlarını içerir. std_logic_arith paketinin alternatifidir.

Use ieee.std_logic_misc.all : std_logic_1164 paketini destekler nitelikte veri
türleri, fonksiyonları ve sabitleri kapsar.

Use ieee.std_logic_textio.all : dosyalara veri yazma ve dosyalardan veri
okuma kapsamında prosedürleri içerir.

4.3 Kütüphane (Library)
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 Kullanıcı paket (package) yapılarını kullanarak kendi kütüphanesini
oluşturabilir.

 Çalışma kütüphanesi derlemenin yapıldığı temel kütüphanedir ve
tanımlanma gereksinimi yoktur. Paket tanımlamaları bu kütüphane
kapsamında yapılır.

 Standard kütüphanesi ön tanımlı bileşenlerin bulunduğu kütüphanedir ve
(Textio harici) tanımlanma gereksinimi yoktur.

 Devre tasarımlarında IEEE kütüphanesinin kendisine ve kullanılacak alt
türe dair tanımlama her zaman yapılmalıdır.

 Bahsi geçen kütüphaneler dışında üreticiye (Altera, Xilinx, vb. gibi) özel
kütüphaneler de mevcuttur.

4.3 Kütüphane (Library) Özetle
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SONRAKİ DERS KONUSU

5- VHDL’DE NESNELER



Ders sorumlusu:

Doç. Dr. Hasan KOYUNCU
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5. VHDL’DE NESNELER
 Nesneler, VHDL yapısı içinde genel olarak üç başlıkta tanımlanır. Bunlar;
sinyaller, değişkenler ve sabitlerdir.

 Sinyal ve değişken verilerine dair değerler tasarım kapsamında sürekli
farklılık gösterebilirken, sabit olarak tanımlanan verilerde değer hiçbir zaman
değişmez.

2

 Sinyaller, bir tasarımda devre için ara bağlantıları sağlayan nesnelerdir.

 Diğer bir deyişle, sistemdeki veri akışını açıklayan nesnelerdir.

5.1 Sinyaller (Signals)
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 Sinyaller, architecture içinde eşzamanlı yapılar arasındaki fiziksel iletişimi
sağlar.

 Sinyaller; package, architecture ve entity içinde tanımlanır, ancak
process, procedure ve function içinde tanımlanamazlar.

 Package ve entity içinde tanımlandıklarında alt birimlerde (farklı
architecture yapılarında) tekrar tanımlanmalarına gerek yoktur.

 Tekil bir architecture içinde tanımlanan sinyal ise yalnızca o mimari içinde
işletilebilir.

5.1 Sinyaller (Signals)
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 F1, C1 ve C2 verileri sinyal nesnesi olarak ifade edilir.

 Sistem içindeki Yarı Toplayıcı iki bileşenin sinyal(ler) ile bağlanması
gereklidir.

5.1 Sinyaller (Signals)

Bir bitlik tam toplayıcı üzerinden sinyal tanımlama örneği
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 Benzer şekilde C1 ve C2 sinyalleri bileşenlerden mantık kapısına bilgi
taşımaktadır.

 Bu noktada sinyaller, devre yollarının üstlendiği görevleri gerçekleştirir.

5.1 Sinyaller (Signals)

Bir bitlik tam toplayıcı üzerinden sinyal tanımlama örneği
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 Sinyaller atanırken kod bloğu içinde ‘<=’ sembolü kullanılır. Bu sembol C
dilindeki ‘=’ ifadesine karşılık gelir.

 İlk değer atamaları için ise ‘:=’ ifadesi işletilir ve bu amaçla aşağıdaki kod
satırı kullanılır.

signal isim: tür := ilkdeğer;

Örneğin; signal vektor: std_logic_vector(7 downto 0) := "00001111";

signal dortlu: std_logic_vector(3 downto 0) := "1111";

signal seviye: bit := '0';

signal yil: integer := 1980;

5.1 Sinyaller (Signals)

İlk değer 
ataması için
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 Sinyallere ilk değer ataması “:=” işareti ile sağlanırken, normal değer
ataması “<=” işareti ile sağlanır. İlintili örnekler aşağıdaki gibidir;

 yil <= 2011;

 seviye <= '1';

 vektor(2) <= '0';

 vektor <= "00001111";

 dortlu <= "1111";

 dortlu <= b"1111";

 dortlu <= x"F";

 dortlu <= (others=>'1');

5.1 Sinyaller (Signals)

Normal 
atama için
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Örnek 5.1: 4-bitlik
ileri sayıcı tasarımı için
gerekli VHDL kodunu
yazınız.

5.1 Sinyaller (Signals)

Tasarım-1

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.std_logic_arith.all; 
Use ieee.std_logic_unsigned.all; 
 
Entity sayici_4b is  
Port (clk: in std_logic; 
          rst: in std_logic; 
          cikis: out std_logic_vector(3 downto 0)); 
End sayici_4b; 
 
Architecture davranis of sayici_4b is 
    signal sayma: integer := 0; 
Begin 
    Process (clk, rst) 
    Begin 
        If (rst = '1') then 
              sayma <= 0; 
        Elsif rising_edge(clk) then 
              sayma <= sayma +1; 
        End if; 
   End process; 
   cikis <= conv_std_logic_vector(sayma, cikis'length); 
End davranis; 

conv_std_logic_vector
fonksiyonunu barındırır.

std_logic_vector
türünde  nesne için 

(sayma türü integer
yerine 

std_logic_vector
seçilirse) doğrudan 

aritmetik işlem 
yapılabilmesini sağlar.
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Örnek 5.1: 4-bitlik
sayıcı tasarımı için
gerekli VHDL kodunu
yazınız.

5.1 Sinyaller (Signals)

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Kısıtsız Integer ile işlem kaynaklı 
32 bitlik register üzerinden 

çözümleme yapılmaya çalışılmış

Architecture davranis of sayici_4b is
    signal sayma: integer := 0; 
Begin 
    Process (clk, rst) 
    Begin 
        If (rst = '1') then 
              sayma <= 0; 
        Elsif rising_edge(clk) then 
              sayma <= sayma +1; 
        End if; 
   End process; 
   cikis <= conv_std_logic_vector(sayma, cikis'length); 
End davranis; 

Tasarım-1
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Örnek 5.1: 4-bitlik sayıcı
tasarımı için gerekli VHDL
kodunu yazınız.

5.1 Sinyaller (Signals) Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.std_logic_arith.all; 
Use ieee.std_logic_unsigned.all; 
 
Entity sayici_4b is  
Port (clk: in std_logic; 
          rst: in std_logic; 
          cikis: out std_logic_vector(3 downto 0)); 
End sayici_4b; 
 
Architecture davranis of sayici_4b is 
    signal sayma: integer range 0 to 15 := 0; 
Begin 
    Process (clk, rst) 
    Begin 
        If (rst = '1') then 
              sayma <= 0; 
        Elsif rising_edge(clk) then 
              If sayma = 15 then  
                   sayma <= 0; 
              Else 
                   sayma <= sayma +1; 
              End if; 
        End if; 
   End process; 
   cikis <= conv_std_logic_vector(sayma, cikis'length); 
End davranis; 
 

Tasarım-2

conv_std_logic_vector
fonksiyonunu barındırır.

std_logic_vector
türünde  nesne için 

(sayma türü integer
yerine 

std_logic_vector
seçilirse) doğrudan 

aritmetik işlem 
yapılabilmesini sağlar.
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Örnek 5.1: 4-bitlik
sayıcı tasarımı için
gerekli VHDL kodunu
yazınız.

5.1 Sinyaller (Signals)
Architecture davranis of sayici_4b is 
    signal sayma: integer range 0 to 15 := 0; 
Begin 
    Process (clk, rst) 
    Begin 
        If (rst = '1') then 
              sayma <= 0; 
        Elsif rising_edge(clk) then 
              If sayma = 15 then  
                   sayma <= 0; 
              Else 
                   sayma <= sayma +1; 
              End if; 
        End if; 
   End process; 
   cikis <= conv_std_logic_vector(sayma, cikis'length); 
End davranis; 
 

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Integer tanımlama sınırlandırıldığı
ve sıfırlama sağlandığı için çok 

daha küçük register dizisi kullanılmış

Tasarım-2
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Örnek 5.1: 4-bitlik
sayıcı tasarımı için
gerekli VHDL kodunu
yazınız.

5.1 Sinyaller (Signals)

Tasarım-3

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity sayici_4b is  
Port (clk: in std_logic; 
          rst: in std_logic; 
          cikis: out std_logic_vector(3 downto 0)); 
End sayici_4b; 
 
Architecture davranis of sayici_4b is 
    signal sayma: unsigned (3 downto 0):= (others =>'0'); 
Begin 
    Process (clk, rst) 
    Begin 
        If (rst = '1') then 
              sayma <=  (others =>'0'); 
        Elsif rising_edge(clk) then 
              If sayma = "1111" then  
                   sayma <= (others =>'0'); 
              Else 
                   sayma <= sayma +1;  
              End if; 
        End if; 
   End process; 
   cikis <= std_logic_vector(sayma); 
End davranis; 
 



Architecture davranis of sayici_4b is 
    signal sayma: unsigned (3 downto 0):= (others =>'0'); 
Begin 
    Process (clk, rst) 
    Begin 
        If (rst = '1') then 
              sayma <=  (others =>'0'); 
        Elsif rising_edge(clk) then 
              If sayma = "1111" then  
                   sayma <= (others =>'0'); 
              Else 
                   sayma <= sayma +1;  
              End if; 
        End if; 
   End process; 
   cikis <= std_logic_vector(sayma); 
End davranis; 
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Örnek 5.1: 4-bitlik
sayıcı tasarımı için
gerekli VHDL kodunu
yazınız.

5.1 Sinyaller (Signals)

Tasarım-3

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Tasarım-2 ile aynı 
işlem ve devre sağlanır
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 Değişken; process ve alt programlar (fonksiyon ve prosedür) içinde
tanımlanan, değeri değiştirilebilen ve en son değerini muhafaza eden
nesnelerdir.

 Herbir değişken belirtilen türde bir değer tutar ve sadece tanımlandığı
process veya alt program kapsamında kullanılabilir.

Aşağıdaki kod satırı, hem ilk değer atamalarında hem de normal (program
içindeki) atamalarda kullanılır. Burada işletilen işaret “:=” olmalıdır.

variable isim: tür := ilkdeğer;

Örneğin; variable deg1: integer := 16;

variable deg2: integer;

5.2 Değişkenler (Variables)

İlk değer ataması ve 
Normal atama için
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 İlintili örnekler aşağıdaki gibidir;

 yil := 2011;

 seviye := '1';

 vektor(2) := '0';

 vektor := "00001111";

 dortlu := "1111";

 dortlu := x"F";

 dortlu := b"1111";

 dortlu := (others=>'1');

 Veri türleri aynı ise değişkenden sinyale veya sinyalden değişkene atama
yapılabilmektedir.

5.2 Değişkenler (Variables)

İlk değer ataması ve 
Normal atama için
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 Değişken değeri ise yalnızca process ve alt programlar içinde
işletilebildiğinden, process dışına değer atamasında değişkenin bir sinyale
aktarılması gerekir.

 Karmaşık hesaplama ve algoritmalar için process içinde değişken
kullanılması tavsiye edilir.

 Sinyaller ile process içine aktarılan değerin bir değişkene atanması, process
içindeki işlemin değişkene göre sonlandırılması ve değişkene dair değerin
process çıkışında tekrar sinyale aktarılması önerilir.

 Simülasyon sırasında değişkenler, genellikle sinyallere göre daha az
bellek tüketir ve daha hızlı işlem yapar, çünkü sadece ilgili process içinde
geçici olarak tutulurlar.

Ancak donanım sentezi açısından, kalıcı veri saklama (depolama elemanı)
için sinyal kullanımı gereklidir.

5.2 Değişkenler (Variables)
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 Bir değişken birden fazla process veya alt program içinde işletilecekse
ortak değişken olarak tanımlanmalıdır.

 Bu tanımlama architecture tanımlama satırı ve begin komutları arasına
yapılabilir.

Aşağıdaki örnekte tek bir architecture yapısı mevcuttur ve içindeki herbir
process’te sayac değişkeni ortak kullanılabilir.

Architecture cikis of sayma is

shared variable sayac: std_logic_vector(3 downto 0) := “0011”;

Begin …

5.2 Değişkenler (Variables)
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Örnek 5.1: 4-bitlik ileri-geri sayıcı
tasarımı gerçekleştirilecektir. Bir
anahtar kullanılacak olup, anahtar
değeri lojik-0 olduğunda geri, lojik-
1 olduğunda ise ileri sayma
gerçekleştirilecektir. Gerekli VHDL
kodunu yazınız.

5.2 Değişkenler (Variables)

 variable nesneleri, önceden
belirtildiği gibi process, procedure
ve function içinde tanımlanmalıdır.

 Yine sinyal tanımlaması ise
mimari (architecture) içinde
yapılmıştır, ancak process,
procedure ve function içinde
tanımlanmaları mümkün değildir.
Sinyal nesneleri bu üç yapının
içerisinde işletilebilirler.

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity ilerigerisay is  
Port (clk, rst, anahtar: in std_logic; 
          cikis: out std_logic_vector(3 downto 0)); 
End ilerigerisay; 
 
Architecture davranis of ilerigerisay is 
     signal say: unsigned(3 downto 0) := (others => '0'); 
Begin 
    Process (clk, rst) 
    Begin 
        If (rst= '1') then 
              say <= (others => '0'); 
        Elsif rising_edge(clk) then 
              If (anahtar = '1') then 
                   say <= say+1; 
              Else 
                   say <= say-1; 
              End if; 
        End if; 
   End process; 
cikis <= std_logic_vector(say); 
End davranis; 
 

Tasarım-1
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5.2 Değişkenler 
(Variables)

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity ilerigerisay is  
Port (clk, rst, anahtar: in std_logic; 
          cikis: out std_logic_vector(3 downto 0)); 
End ilerigerisay; 
 
Architecture davranis of ilerigerisay is 
     signal say: unsigned(3 downto 0) := (others => '0');
Begin 
    Process (clk, rst) 
    Begin 
        If (rst= '1') then 
              say <= (others => '0'); 
        Elsif rising_edge(clk) then 
              If (anahtar = '1') then 
                   say <= say+1; 
              Else 
                   say <= say-1; 
              End if; 
        End if; 
   End process; 
cikis <= std_logic_vector(say); 
End davranis; 
 

Tasarım-1
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Örnek 5.1: Aynı örneğin VHDL
kodunu say nesnesi variable olduğu
durum için yazalım.

 Nesnelerin tanımlama yerlerine ve
nesnelere değer atama için gerekli
komutlara dikkat edilmelidir.

5.2 Değişkenler (Variables) Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity ilerigerisay is  
Port (clk, rst, anahtar: in std_logic; 
          cikis: out std_logic_vector(3 downto 0)); 
End ilerigerisay; 
 
Architecture davranis of ilerigerisay is 
Begin 
    Process (clk, rst) 
    variable say: unsigned(3 downto 0) := (others => '0'); 
    Begin 
        If (rst= '1') then 
              say := (others => '0'); 
              cikis <= std_logic_vector(say); 
        Elsif rising_edge(clk) then 
              If (anahtar = '1') then 
                   say := say+1; 
              Else 
                   say := say-1; 
              End if; 
              cikis <= std_logic_vector(say); 
        End if; 
   End process; 
End davranis; 
 

Tasarım-2



Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity ilerigerisay is  
Port (clk, rst, anahtar: in std_logic; 
          cikis: out std_logic_vector(3 downto 0)); 
End ilerigerisay; 
 
Architecture davranis of ilerigerisay is 
Begin 
    Process (clk, rst) 
    variable say: unsigned(3 downto 0) := (others => '0');
    Begin 
        If (rst= '1') then 
              say := (others => '0'); 
              cikis <= std_logic_vector(say); 
        Elsif rising_edge(clk) then 
              If (anahtar = '1') then 
                   say := say+1; 
              Else 
                   say := say-1; 
              End if; 
              cikis <= std_logic_vector(say); 
        End if; 
   End process; 
End davranis; 
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5.2 Değişkenler 
(Variables)

Tasarım-2

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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5.2 Değişkenler (Variables)
Tasarım-1

Tasarım-2

Say signal olarak tanımlı

Say variable olarak tanımlı
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5.2 Değişkenler (Variables)

 Tasarım-1 ve Tasarım-2 sırasıyla signal ve variable tanımlamalarına örnek
vermek amacıyla sunulmuştur.

 Her iki tasarımda da görüleceği üzere port bilgileri process içinde doğrudan
işletilebilir. (anahtar portunun durumuna göre işlem sağlanması, çıkış ataması,
vb gibi)

Process içi variable kullanarak çözüm önermek bazı durumlarda daha basit
devre yapısı sağlayabilir.

Ancak sentezlenebilirlik üzerine de sinyal kullanımı tavsiye edilir.

Önemli Bilgi
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5.2 Değişkenler (Variables)
 Çıkışa değer ataması, ilk örnekte (Tasarım-2’de) rst='1' ve clk sinyalinin
yükselen kenarında sağlanır.

 Diğer örnekte ise If bloğu dışına ve process içine yazımı sağlanmıştır. Process
içinde işlem yapılması doğrudur (variable process dışında kullanılmaz, process
dışına çıkarmak için sinyale aktarmak gerekir).

Architecture davranis of ilerigerisay is
Begin 
    Process (clk, rst) 
    variable say: unsigned(3 downto 0) := (others => '0'); 
    Begin 
        If (rst= '1') then 
              say := (others => '0'); 
        Elsif rising_edge(clk) then 
              If (anahtar = '1') then 
                   say := say+1; 
              Else 
                   say := say-1; 
              End if; 
        End if; 
        cikis <= std_logic_vector(say); 
   End process; 
End davranis; 

Architecture davranis of ilerigerisay is 
Begin 
    Process (clk, rst) 
    variable say: unsigned(3 downto 0) := (others => '0');
    Begin 
        If (rst= '1') then 
              say := (others => '0'); 
              cikis <= std_logic_vector(say); 
        Elsif rising_edge(clk) then 
              If (anahtar = '1') then 
                   say := say+1; 
              Else 
                   say := say-1; 
              End if; 
              cikis <= std_logic_vector(say); 
        End if; 
   End process; 
End davranis; 

Tasarım-2 Dikkatli kullanım gerekir
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5.2 Değişkenler (Variables)

Ancak If bloğu dışına yazım olduğu için sistemi gereksiz yükleme altında bırakır.

 Process bloğu duyarlık listesinde rst ve clk sinyalleri tanımlı olduğundan bu blok
rst ve clk sinyallerinin her biri için 01 ve 10 değişimleri için tetiklenir.

Architecture davranis of ilerigerisay is
Begin 
    Process (clk, rst) 
    variable say: unsigned(3 downto 0) := (others => '0'); 
    Begin 
        If (rst= '1') then 
              say := (others => '0'); 
        Elsif rising_edge(clk) then 
              If (anahtar = '1') then 
                   say := say+1; 
              Else 
                   say := say-1; 
              End if; 
        End if; 
        cikis <= std_logic_vector(say); 
   End process; 
End davranis; 

Architecture davranis of ilerigerisay is 
Begin 
    Process (clk, rst) 
    variable say: unsigned(3 downto 0) := (others => '0');
    Begin 
        If (rst= '1') then 
              say := (others => '0'); 
              cikis <= std_logic_vector(say); 
        Elsif rising_edge(clk) then 
              If (anahtar = '1') then 
                   say := say+1; 
              Else 
                   say := say-1; 
              End if; 
              cikis <= std_logic_vector(say); 
        End if; 
   End process; 
End davranis; 

Tasarım-2 Dikkatli kullanım gerekir
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5.2 Değişkenler (Variables)

 Eğer çıkış atama komutu If bloğu dışına yazılırsa, çıkışa atama işlemi clk
sinyalinin düşen kenarında dahi sağlanır.

Bu nedenle hangi kodun nereye yazıldığı çok önemlidir.

Architecture davranis of ilerigerisay is
Begin 
    Process (clk, rst) 
    variable say: unsigned(3 downto 0) := (others => '0'); 
    Begin 
        If (rst= '1') then 
              say := (others => '0'); 
        Elsif rising_edge(clk) then 
              If (anahtar = '1') then 
                   say := say+1; 
              Else 
                   say := say-1; 
              End if; 
        End if; 
        cikis <= std_logic_vector(say); 
   End process; 
End davranis; 

Architecture davranis of ilerigerisay is 
Begin 
    Process (clk, rst) 
    variable say: unsigned(3 downto 0) := (others => '0');
    Begin 
        If (rst= '1') then 
              say := (others => '0'); 
              cikis <= std_logic_vector(say); 
        Elsif rising_edge(clk) then 
              If (anahtar = '1') then 
                   say := say+1; 
              Else 
                   say := say-1; 
              End if; 
              cikis <= std_logic_vector(say); 
        End if; 
   End process; 
End davranis; 

Tasarım-2 Dikkatli kullanım gerekir
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Sabit (Constant), sinyal ve değişken nesnelerinin aksine değeri
değiştirilemeyen nesnelerdir.

 Sabit nesneleri, programların okunabilirliğini artırmaktadır. Sabit
tanımlamaları aşağıdaki kod satırı ile gerçekleştirilir.

constant isim: tür:= ilkdeğer;

Örneğin; constant katsayi: integer:= 4;

5.3 Sabitler (Constants)
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6. VHDL VERİ TÜRLERİ
 VHDL üzerinden tasarlanan devrelerde veriyi hafıza elemanlarında
muhafaza ederek temsil eden türlerdir.

 Veri türleri; sinyal (signal), değişken (variable) ve sabit (constant) olarak
belirtilen nesnelerin alabileceği değerleri tanımlamada kullanılırlar.

 VHDL, nesnelerin belirgin bir şekilde tanımlanmalarını zorunlu kılan bir
dildir ve veri tür tanımlamaları büyük bir önem arz eder.

 Veri türleri, bildirimleri sonrasında program içinde değiştirilemez.

 Tür bildirimleri, type ve subtype komutları ile gerçekleştirilir. Type komutu
ile yeni bir tür, subtype komutu ile de mevcut bir türe dair alt tür
tanımlanır. 2



3

 Ele alınan nesnenin yalnızca bir veri değeri tutabildiği türlerdir.

 Sıralı, fiziksel, kayan nokta ve integer türlerinden meydana gelir.

 Bu tür kapsamındaki tanımlamalarda aralık veya sıralama kullanılır.

Örneğin; type gri_seviye is range 0 to 255;

type gri_seviye is range 255 downto 0;

type sys_in is (gerilim, akim, sicaklik, nem);

 Değer aralığı tanımlamasında küçükten büyüğe “to”, büyükten küçüğe ise
“downto” komutları işletilir.

6.1 Skaler Türler
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 Nesnelere dair türlerin sıralı listeleme yöntemi kullanılarak tanımlandığı,
kullanıcıya özel (kullanıcının tanımlaması gereken) veya ön tanımlı
(önceden sistemde alacağı kategoriler bilinen ve yeniden tanımlanması
gerekmeyen) veri türüdür.

 Bu tür, kullanıcıya özel inceleme kapsamında özellikle durum makinesi
modellemek için kullanılır ve durumlara dair okunabilirliğin artırılmasını
sağlar.

Tanımlama komutu: type nesne_ismi is (kategori1, kategori2, kategori3,…);

Örneğin; type lojik_seviye is (L,H);

type durum is (basla, dur, ileri, geri);

 Tanımlama komutundaki kategori isimleri harf, alt çizgi ve numaralardan
oluşur.

6.1.1 Sıralı Tür



type doluluk is (bos, ceyrek, yarim, yariceyrek, tam); 

type lojik_seviye is ('0', '1'); 

variable doluluk_kontrol: doluluk; 

signal seviye_kontrol: lojik_seviye; 

… 

doluluk_kontrol := ceyrek; 

seviye_kontrol <= '1'; 5

6.1.1 Sıralı Tür

Sıralı tür atama örneği

 Kategori isminin ilk elemanı harf ile başlatılmalıdır.

 Değişken ve sinyallere atama yapılırken, atanacak değer ve değerin
atanacağı nesnenin aynı türde olması gereklidir.

Örneğin; type lojik_seviye is (L,H);

type durum is (basla, dur, ileri, geri);
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Boolean Türü: Ön tanımlı türlerden birisi olup, true veya false
değerlerinden birini alır.

Ön tanım komutu: type boolean is (true, false);

Bit Türü: ‘0’ ve ‘1’ değerlerini alabilen ön tanımlı türdür.

 Integer (tam sayı) türü ile karıştırılmaması için tırnak işareti içinde
tanımlanır.

Ön tanım komutu: type bit is ('0', '1');

Örneğin; signal deger: bit := '1'; // bildirim ve ilk değer ataması

…

deger <= '0'; // kod bloğu içinde değer ataması

6.1.1 Sıralı Tür



7

Character Türü: ISO-8859-1 karakter setindeki 256 farklı karakteri içerir.

Sıralı Tür İçin Önemli Bilgi: Sıralı tür içerisinde bir diğer önemli konu ise
aşırı yüklemedir.

 Bir kategori birden fazla sıralı tür içerisinde kullanıldığında aşırı yükleme
durumu söz konusu olabilir.

 Herhangi bir anlam kargaşası oluşmaması için program içinde kullanılan
sıralı türün hangisi olduğu açık bir şekilde belirtilmelidir.

Örneğin; type girdiler is (gerilim, akim, ruzgar, nem, sicaklik);

type ayarlanacak is (gerilim, akim, katsayi);

…

deg <= girdiler'(akim);

6.1.1 Sıralı Tür
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Alabileceği değerler kullanıcı tarafından belirlenen aralıktaki tamsayıları
kapsayan skaler türdür.

Tanımlama komutu: type isim is range alt_limit to ust_limit;

type isim is range ust_limit downto alt_limit;

Örneğin; type tam_sayi is range -1000 to 3000;

subtype pozitifler is tam_sayi range 1 to 3000;

Integer Türü: Standard paketinde bulunan ön tanımlı tamsayı türüdür.
Tanımlı olduğu aralık ise -2.147.483.647 ile 2.147.483.647 arasıdır.

Ön tanım komutu: type integer is range -2147483647 to 2147483647;

Örneğin; signal sayma: integer;

…

sayma <= 657;

6.1.2 Tamsayı Türü
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 Uzunluk, ağırlık, sıcaklık gibi ölçülebilen fiziksel özellikler nicelik olarak
bilinir.

 Fiziksel tür, nesnelerin nicel tanımlamalarını birim baz üzerinden
yapabilmek için kullanılan skaler türdür.

 Nicel olarak sayısal oranlarla kendi içinde dönüştürülebilen ve ölçülebilen
birimleri ifade etmek için kullanılır.

 Fiziksel türe dair en küçük birim temel birim olarak adlandırılır.

 Türün bildirimi sırasında range komutu işletilir ve nesneye dair sınır
değerler (en yüksek ve en düşük) tanımlanır.

6.1.3 Fiziksel Tür
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Tanımlama komutu: type tur_ismi is range alt_limit to ust_limit

units

temel_birim_ismi;

ikincil_birim_ismi = deger temel_birim_ismi;

ucuncul_birim_ismi = deger ikincil_birim_ismi;

…

end units tur_ismi;

Fiziksel türler yalnızca simülasyonda kullanılır.

Fiziksel türde tanımlı bir nesne üzerinde aritmetiksel ve mantıksal işlemler
yapılabilir, ancak bu türler sentezde kullanılamaz.

6.1.3 Fiziksel Tür
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Örneğin; type uz_deg is range 0 to 1E9
units

mm;
cm = 10 mm;
dm = 10 cm;
m = 10 dm;
km = 1000 m;

end units uz_deg;
variable sayi1: uz_deg;

variable sayi2: integer;

…

sayi1 := 2 mm + 5 dm + 3 m;

sayi2 := 1250;

6.1.3 Fiziksel Tür
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Time Türü: Standard paketinde bulunan ön tanımlı fiziksel türdür.

 Tanımlı olduğu aralık ise -2.147.483.647 ile 2.147.483.647 arası olup, temel
birim femtosaniye (saniyenin 10-15’i)’dir.

Ön Tanım komutu: type time is range -2147483647 to 2147483647
units

fs; --femtosecond
ps = 1000 fs; --picosecond
ns = 1000 ps; --nanosecond
us = 1000 ns; --microsecond
ms = 1000 us; --milisecond
sec = 1000 ms; -- second
min = 60 sec; --minute
hr = 60 min; --hour

end units;

Örneğin; constant periyot_deg: time := 5ns;

6.1.3 Fiziksel Tür
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 Özel olarak belirli sınırlarda tanımlanan ve gerçek sayılardan oluşan
fiziksel türdür.

Matematiksel işlemlerde (toplama, çıkarma, üs alma, vb. gibi)
kullanılabilirler.

Tanımlama komutu:

type tur_ismi is range ust_sinir downto alt_sinir;

type tur_ismi is range alt_sinir to ust_sinir;

Örneğin; type akim_degeri is range -3.7 to 6.5;

type gerilim_degeri is range -360.87 to 520.35;

6.1.4 Kayan Nokta Türü
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Real Türü: Standard paketinde bulunan ön tanımlı kayan nokta türü olup,
gerçek sayıların tanımlanacağı nesneler için kullanılır.

Ön tanım komutu: type real is range -1.7014111e+308 to 1.7014111e+308;

Örneğin; constant katsayi: real := 5.785;

6.1.4 Kayan Nokta Türü

 Bir değer yığınını gösteren veri türüdür.

 Bu türde tanımlı nesneler birden fazla unsura sahiptir.

 Array ve record olmak üzere iki kompozit tür bulunur.

6.2 Kompozit Tür
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6.2.1 Array (Dizi) Türü

Aynı türdeki bir veya daha fazla elemanı gruplayıp bir nesne olarak
tanımlayan veri türüdür.

 Bir dizideki her elemanın, belli aralık içinde bir indeks numarası bulunur.

 Tek boyutlu dizilerde bir indeks numarası bulunurken, çok boyutlu dizide
dizi boyutu kadar sayıda indeks numarası kullanılır.

 Çok boyutlu diziler genelde sentezlenemez.

Tanımlama komutları:

type tur_ismi is array (aralık) of dizi_turu; (Kısıtlamalı Dizi)

type tur_ismi is array (alt_tur range < >) of dizi_turu; (Kısıtlamasız Dizi)
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6.2.1 Array (Dizi) Türü

Örneğin;

type ram_turu is array (0 to 7) of std_logic_vector (3 downto 0);

 Diziler aralığa bağlı olarak kısıtlı veya kısıtsız olabilmektedir.

 Değer aralığı açık bırakılan kısıtsız dizilerdeki eleman sayısı da belirsiz
olacaktır.

 Kısıtlamasız olarak bildirilen bir diziye dair boyutun, kod bloğu içinde
mutlaka bildirilmesi gerekir.

 Bu türdeki sinyal ve değişkenler ancak bu şekilde program kapsamında
kullanılabilir.

23 × 4 Ram / Rom 
için tür tanımıYeni tür ismi
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6.2.1 Array (Dizi) Türü

Örnek 6.1: 4’er bitten oluşan ve kısıtlanmamış bir bellek tanımlaması için
gerekli VHDL kodunu yazınız.

type bellek is array (natural range < >) of bit_vector (0 to 3);

 Sınırsız oluşturulan bellek kapasitesi aşağıdaki kod bloğu ile belirlenebilir.

signal ram_bellegi: bellek (0 to 5);



18

6.2.1 Array (Dizi) Türü

Array tipinde tanımlı dizi elemanlarının her birisine bağımsız olarak değer
atanabilmektedir.

 Dizilerde sinyal–değişken arası atama yapılırken, bunların tür ve
genişliklerinin aynı olması gereklidir.

Örneğin; Tam sayı türünde 10 elemanlı dizi için gerekli tür tanımlaması:

type int_vekt is array (1 to 10) of integer;

Örneğin; Bit türünde 5 elemanlı dizi için gerekli tür tanımlaması:

type bit_dizisi is array (0 to 4) of bit;
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6.2.1 Array (Dizi) Türü

Örneğin; Kısıtlamasız bir bit vektör dizisinin tanımlanması ve kod içinde bu
türde 8 bitlik bir nesne tanımlaması:

type bit_vektoru is array (natural range < >) of bit;

…

signal nesne1: bit_vektoru (7 downto 0);

 Burada kod bloğu içinde kısıtlamasız tanımlanan bit_vektoru isimli dizinin
boyutu, program içinde 8 ile sınırlandırılarak kullanılıyor.
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6.2.1 Array (Dizi) Türü

Örnek 6.2: 3x6 boyutlu, integer değerleri tutacak olan bir matrisde 1x5
konumuna 91 değerini atayınız.

type tams_vek is array (0 to 5) of integer; 

type matris_tip is array (0 to 2) of tams_vek; 

signal matris_ilk: matris_tip; 

… 

matris_ilk(1)(5) <= 91; 

type matris_tip is array (0 to 2, 0 to 5) of integer; 

signal matris_ilk: matris_tip; 

… 

matris_ilk(1)(5) <= 91; 

Örnek 6.2’ de bir diğer

kod tanımlaması:
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6.2.1 Array (Dizi) Türü

Bit_vector Türü: Ön tanımlı array türü olup, elemanlarının her biri ‘0’ ve ‘1’
lerden oluşur.

 Bildirim aşamasında dizinin genişliği belirtilir. Bit_vector türünde tanımlı
nesneler için vektör değerleri atanacak ise çift tırnak, tekil bir bit değeri
atanacaksa tek tırnak kullanılır.

Ön Tanım Komutu: type bit_vector is array (natural range < >) of bit;
Örneğin; signal vektor1: bit_vector(3 downto 0);

signal vektor2: bit_vector(7 downto 0);
signal tekil_deg: bit;
…
vektor1 <= "1011";
vektor1(3) <= '0';
tekil_deg <= '0';
vektor2 <= "10101111";
vektor2 <= x"AF";



22

6.2.1 Array (Dizi) Türü

String Türü: Ön tanımlı array türü olup, karakterlerden oluşan dizilerdir.

 Bildirim aşamasında dizinin boyutu ve sıralaması belirtilir.

 Bu türdeki değerler çift tırnak içinde tanımlanır.

 Sentezlenemeyen bir türdür ve simülasyon içinde mesaj yayınlamak için
kullanılır.

Ön Tanım Komutu: type string is array (positive range < >) of character;

Örneğin; constant eleman: string := "FPGA";
constant dil: string(1 to 4) := "VHDL";
signal mesaj2: string(1 to 8);
…
mesaj2 <= eleman & dil;
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6.2.2 Record Türü

 Kapsamındaki elemanların farklı türdeki nesneleri içerdiği kompozit
türdür.

Tanımlama komutları: type record_ismi is record
eleman_ismi: tur;
eleman_ismi: tur;
…

end record;

Örneğin;

type not_kaydi is record

ogr_not: integer;

ogr_isim: string (1 to 40);

end record;
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 IEEE kütüphanesinde tanımlanmış olan veri türleridir.

 En sık kullanılanları Std_Logic_1164 ve Std_Logic_Arith paketlerinde
tanımlı türlerdir.

6.3 Synopsis Veri Türleri

6.3.1 Std_Logic_1164 Paketinde Tanımlı Türler

 Bu kapsamda yer alan türlere dair bildirimler, program başlangıcında
aşağıdaki tanımlama yapıldıktan sonra sağlanır:

Library ieee;

Use ieee.std_logic_1164.all;
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6.3.1 Std_Logic_1164 Paketinde Tanımlı Türler

Std_logic: VHDL dilinde en sık kullanılan veri türüdür. Bu tür kapsamında
9 farklı durum değer olarak atanabilmektedir. Bu türler:

 1Mantıksal – 1
 0Mantıksal – 0
 H Zayıf – 1
 L Zayıf – 0
 X Bilinmeyen
 U Tanımlanmamış
 - Önemsiz
W Zayıf bilinmeyen
 ZYüksek Empedans şeklindedir.

Eğer bu kapsamda tanımlanan bir veri için başlangıç değeri atanmamışsa,
varsayılan değer “U – Tanımlanmamış” şeklinde atanır.

 Std_logic türündeki nesnelere atamalar tek tırnak içinde yapılır.
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6.3.1 Std_Logic_1164 Paketinde Tanımlı Türler

Örneğin;

signal ekg1: std_logic; // ilk atama yapılmamış, varsayılan değer 'U' olarak
bilinir.

signal ekg2: std_logic := '1'; // ilk atama yapılmış ve değer mantıksal-1 (yani
lojik-1).

signal ekg3: std_logic := '-'; // ilk atama yapılmış ve değer önemsiz.

Std_logic_vector: Elemanlarının her birisi std_logic türünde olan dizi
türüdür. Bağlı bulunan nesne değerleri çift tırnak içinde ifade edilir.

Örneğin;

signal parcacik: std_logic_vector (3 downto 0);

signal durum1: std_logic_vector (2 to 5) := "1010";

signal durum2: std_logic_vector (7 downto 0) := x"FF";
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6.3.2 Std_Logic_Arith Paketinde Tanımlı Türler

 Bu kapsamda yer alan türlere dair bildirimler, program başlangıcında
aşağıdaki tanımlama yapıldıktan sonra sağlanır:

Library ieee;

Use ieee.std_logic_arith.all;

Unsigned: İşaretsiz sayıları temsil etmek için tanımlanır.

 En küçük değeri “0” olup, negatif sayıları içermez.

 Bu türde tanımlanacak nesne bildirimlerinde değer aralığı bildirilmelidir.

 Nesneye atama yapılırken nesne içi bir elemana atamada tek tırnak,
birden çok eleman atamasında ise çift tırnak kullanılır.
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6.3.2 Std_Logic_Arith Paketinde Tanımlı Türler

Örneğin;

signal in_deg: unsigned (0 downto 0);

…

in_deg <= '0';

in_deg(0) <= '1';

Örneğin;

variable degisken: unsigned (0 to 7) := "11111111";

…

degisken(1 to 3) := "000";

degisken(2) := '1';
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6.3.2 Std_Logic_Arith Paketinde Tanımlı Türler

Signed: İşaretli sayı değerlerini temsil etmek için tanımlanır.

 En sol kısımda yer alan bit işaret biti olarak nitelenir, ‘0’ olması halinde
sayı pozitif ve ‘1’ olması halinde sayı negatiftir.

 Negatif olan sayılar ikiye tümleme mantığı ile yazılmalıdır.

Yine atamalarda değer aralığı belirtilmeli, çoklu eleman atamalarında çift
tırnak ve tekli eleman atamalarında tek tırnak kullanılmalıdır.

 “n” bitlik signed türünde bir nesne için alabileceği değerler, –(2n–1) ile
(2n–1–1) arası sayısal değer olacaktır.

signed ("0011") // (+3)

signed ("1101") // (-3)
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6.3.2 Std_Logic_Arith Paketinde Tanımlı Türler

Örneğin;
variable deg_in: signed (1 to 5);
…
deg_in := "11100";
deg_in(4) := '1';
deg_in(1 to 2) := "00";

 VHDL dilinde mevcut olan bir türün belirli bir kısıtla sunulan hali, alt
tür olarak tanımlanır.

Alt tür, mevcut bir türün alt kümesidir.

6.4 Alt Türler
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 Standard paketleri kapsamında en sık kullanılan iki ön tanımlı alt tür,
Natural ve Positive türleridir.

Tanımlama komutu: subtype alttur_ismi is temel_tur range aralık_kisiti;

Örneğin; type tam_sayi is range -20 to 20;

subtype poz_tam_sayi is tam_sayi range 1 to 20;

Natural: Kapsamında “0” ve pozitif sayıların yer aldığı tür olup, integer
türünün alt türüdür.

Ön Tanım Komutu: subtype natural is integer range 0 to integer'high;

Örneğin; signal deger: natural;
…
deger <= 0;
deger <= 5850;

6.4 Alt Türler
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Positive: Kapsamında pozitif sayıların yer aldığı tür olup, integer türünün
alt türüdür.

Ön Tanım Komutu: subtype positive is integer range 1 to integer’high;

Örneğin; signal deger: positive;
…
deger <= 1;
deger <= 9523;

6.4 Alt Türler

6.5 Dizi İşlemleri

 VHDL nesneleri, kendilerine değer ataması yapılarak veya birbirleri ile
işleme tabi tutularak kullanılır.

 Dizilerde de karşılaştırma, atama, ekleme gibi işlemler gerçekleştirilir.
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6.5 Dizi İşlemleri

 Birden fazla elemana sahip dizilerde bu işlemlerin sağlanabilmesi için 4
farklı yardımcı işlem bulunur:

1-Birleştirme
2-Kümeleme
3-Dilimleme
4-Takma ad

Birleştirme (&): Aynı türdeki iki dizinin ‘&’ (ampersand) işareti
kullanılarak birleştirilmesi sağlanır.

 Bu operatör (&), sinyal atama operatörünün (<=) yalnızca sağ tarafında
işletilir.

 Bu operatörle dizilere tek bir eleman eklenebileceği gibi, aynı türde farklı
iki eleman da birbirine bağlanabilir.



34

6.5 Dizi İşlemleri

Örnek 6.3: Dizi birleştirme örnekleri

elde_1 <= B & C;

elde_2 <= A & D;

elde_3 <= A & B;

elde_4 <= A & B & C;
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6.5 Dizi İşlemleri

Örnek 6.4: Öteleyici register tasarımı için gerekli architecture kodunu
birleştirme operatörü kullanarak sağlayınız.

Architecture davranis of oteleyici_reg is 
    signal Q: std_logic_vector(3 downto 0) := "0000"; 
Begin 
    Process (clk_s) 
    Begin 
        If (clk_s'event) and clk_s = '1' then 
              Q <= Q(2 downto 0) & giris_s; 
        End if; 
   End process; 
End davranis; 
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6.5 Dizi İşlemleri

Kümeleme: Record ve array türündeki nesnelere değer atanırken kullanılır.

 Kümeleme yönteminde dizideki herbir elemana teker teker değer atamak
yerine, bütün elemanlara aynı anda farklı değerler atanabilir.

 Nesnelere atama yapılırken kümeleme kullanılırsa, parantez içinde her
bildirim arası virgül kullanılır.

 Kümeleme işleminde dizi elemanları indeks numarasına göre
adreslenebilmektedir.

Adreslenmeyen elemanlar için “others” terimi üzerinden adresleme
yapılabilir ve bu terim bildirilirken parantez içi sonda yer alır.
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6.5 Dizi İşlemleri

Dizi Türü İçin Örnekler;

variable vektor1: std_logic_vector (3 downto 0) := ('1', '0', '1', '1');

 vektor1 nesnesine dair ilk değer ataması 1011 şeklinde olur.

variable vektor2: std_logic_vector (3 downto 0) := ('1', '1',others=>'0');

 vektor2 nesnesine dair ilk değer ataması 1100 şeklinde olur.

variable vektor3: bit_vector (3 downto 0) := (0=>'1', 1=>'1', 2=>'0', 3=>'0');

 vektor3 nesnesine dair ilk değer ataması 0011 şeklinde olur.

signal veri: bit_vector (7 downto 0);
…
veri <= (7 downto 4 => '0', 3 downto 0 => '1');
 veri nesnesine değer ataması 00001111 şeklinde olur.
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6.5 Dizi İşlemleri

Record Türü İçin Örnek;
type bilgi is record

sayi_deg: integer;
eleman_bil: string (1 to 4);

end record;
variable yaz: bilgi := (sayi_deg=>5, eleman_bil=> "ASIC");
…
yaz := (10, "FPGA");

Dilimleme: Bir diziyi parçalara ayırmak amacıyla kullanılır. Ayrılan herbir
parça dizi dilimi olarak nitelenir.

 Herbir dizi diliminin adı, içindeki elemanlara dair veri türü ve yönü
çıktığı (ana) dizidekiyle aynıdır.

 Örneğin ana dizideki veri yönü downto ile belirli ise dilimlerde de aynı
durum olmalıdır.
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6.5 Dizi İşlemleri

Örneğin; signal bilgi: std_logic_vector (0 to 15);
…

bilgi(0 to 3) -- ilk dilim: bilgi (ana) dizisinin ilk 4 elemanını içerir

bilgi(4 to 7) -- 2. dilim: bilgi dizisindeki ikinci 4’lüyü içerir

bilgi(8 to 8) -- 3. dilim: bilgi dizisinde 9. elemanı içerir

bilgi(9 to 15) -- 4. dilim: bilgi dizisindeki son 7 elemanı içerir

Takma Ad: Varolan bir nesnedeki bilgileri, herbiri farklı isimle belirtilmiş
farklı gruplara ayırmak için işletilir.

 Büyük verilerin parçalanarak daha kolay işlenmesini sağlar.

Tanımlama komutu:
alias takma_isim: takma_isim_veri_turu is nesne_ismi;
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6.5 Dizi İşlemleri

Örneğin kod bloğu;

signal bilgi: std_logic_vector(7 downto 0);

alias alt_bilgi1: std_logic_vector(2 downto 0) is bilgi(7 downto 5);

alias alt_bilgi2: std_logic is bilgi(4);

alias alt_bilgi3: std_logic_vector(3 downto 0) is bilgi(3 downto 0);

alias takma_isim: takma_isim_veri_turu is nesne_ismi;
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6.6 Nitelik (Attribute)

 Attribute, sinyal veya değişken nesnelere dair özellikleri döndürmek için
kullanılır.

 Ön tanımlı olan nitelik türleri, VHDL standardı olarak bütün sentezleme
araçları tarafından desteklenir.

 Left: Vektör olarak ifade edilen nesnenin solundaki indisi gösterir.

 Right: Vektör olarak ifade edilen nesnenin sağındaki indisi gösterir.

 High: Vektör olarak ifade edilen nesnenin en büyük indisi gösterir.

 Low: Vektör olarak ifade edilen nesnenin en küçük indisi gösterir.

 Length: Vektör olarak ifade edilen nesnenin uzunluğunu gösterir.

 Range: Vektör olarak ifade edilen nesnenin indis aralığını gösterir.
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6.6 Nitelik (Attribute)

Örneğin; signal vektor: std_logic_vector (2 to 8);

Nitelik İfadesi Elde Edilecek Değer 

vektor'left 2 

vektor'right 8 

vektor'high 8 

vektor'low 2 

vektor'length 7 

vektor'range 2 to 8 
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Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity dizi_yakala is  
Port (clk_s, giris_s: in std_logic; 
          izin: out std_logic); 
End dizi_yakala; 
 
Architecture davranis of dizi_yakala is 
    signal Q: std_logic_vector (3 downto 0) := "0000"; 
Begin 
    Process (clk_s) 
    Begin 
        If rising_edge(clk_s) then 
              Q <= Q(2 downto 0) & giris_s; 
        End if; 
   End process; 
   izin <= Q(3) and Q(2) and Q(1) and (not Q(0));  
End davranis; 
 

6.6 Nitelik 
(Attribute)

Örnek 6.5: Öteleyici
register üzerinden 1110
dizisini yakalayan
devrenin tasarımı için
gerekli VHDL kodunu
yazınız.



Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity dizi_yakala is  
Port (clk_s, giris_s: in std_logic; 
          izin: out std_logic); 
End dizi_yakala; 
 
Architecture davranis of dizi_yakala is 
    signal Q: std_logic_vector (3 downto 0) := "0000"; 
Begin 
    Process (clk_s) 
    Begin 
        If rising_edge(clk_s) then 
              Q <= Q(2 downto 0) & giris_s; 
        End if; 
   End process; 
   izin <= Q(3) and Q(2) and Q(1) and (not Q(0));  
End davranis; 
 

6.6 Nitelik 
(Attribute)

Örnek 6.5: Öteleyici register üzerinden 1110 dizisini yakalayan
devrenin tasarımı için gerekli VHDL kodunu yazınız.

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

44



45

SONRAKİ DERS KONUSU

7- VHDL OPERATÖRLERİ



Ders sorumlusu:
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7. VHDL OPERATÖRLERİ
 VHDL ifadeleri arasında kullanımı gerekli olan aritmetik, karşılaştırma ve
mantıksal işlemlerin sağlanabilmesi için operatörler kullanılır.

 Genel olarak 6 başlık altında incelenirler.

2
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7. VHDL OPERATÖRLERİ
 VHDL operatörlerinin kullanım önceliği tabloda yukarıdan aşağıya doğru en
önemliden başlayarak sunulmuştur.

 Aynı sınıfta yer alan operatörler aynı önceliğe sahiptirler ve kod içinde
soldan sağa doğru öncelikte işlem yapılır.

Yine kod içinde parantez kullanılarak öncelik sağlanabilir.

VHDL operatörlerinin özellikleri

Operatör Türü Operatör İsmi / Sembolü Öncelik 
Sırası 

Özel Operatörler **,   NOT,   ABS 

 Aritmetik 
Ulama / Toplama / Çıkarma &,   +,   - 

Çarpma / Bölme *,   /,   MOD,   REM 
Kaydırma SLL,   SRL,   SLA,   SRA 
Döndürme ROL,   ROR 

Karşılaştırma =,   /=,   <,   <=,   >,   >= 
Mantık AND,   OR,   NAND,   NOR,   XOR,   XNOR 
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Matematikte kullanılan bütün aritmetik operatör sembolleri ve bu işlemlerin
öncelik sırası VHDL dilinde de aynı şekilde kullanılır.

 Aritmetik işlemler yalnızca aynı türdeki elemanlar arası
gerçekleştirilebilir.

 Bu operatörler bit_vector dışında bütün vektör ve sayı türleri için
kullanılabilirler.

7.1 Aritmetik Operatörler

İşaret İşlem Örnek 
+ Toplama 4+2=6 
- Çıkarma 8-3=5 
* Çarpma 3*4=12 
/ Bölme 7/2=3 

MOD Kalan 5 MOD 2 = 1 
8 MOD 5 = 3 

REM Kalan 5 REM 2 = 1 
(-5) REM 3 = -2 

Aritmetik operatörlere dair 
işaret ve işlem ilişkisi
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 Dizilerde aritmetik işlem yapılırken işleme girecek dizilere dair
boyutların eşit olması gereklidir. Böylece dizilerin bütün elemanları
karşılıklı olarak işleme girer.

MOD operatöründe sonucun işareti “bölen” sayının işaretiyle aynı olacaktır.
REM işleminde ise sonuç işareti “bölünenin” işareti ile aynı olur.

 REM ve MOD operatörleri, bir tamsayının başka bir tamsayıya
bölümünden kalanı tespit etmek için kullanılır.

7.1 Aritmetik Operatörler

REM MOD 

İşlem Açıklama İşlem Açıklama 
5 rem 3 = 2 1*3 + 2 5 mod 3 = 2 1*3 + 2 

(-5) rem 3 = -2 (-1)*3 + (-2) (-5) mod 3 = 1 (-2)*3 + 1 
(-5) rem (-3) = -2 1*(-3) + (-2) (-5) mod (-3) = -2 1*(-3) + (-2) 

5 rem (-3) = 2 (-1)*(-3) + 2 5 mod (-3) = -1 (-2)*(-3) + (-1) 

REM ve MOD bölme örnekleri
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Örnek 7.1: Bir dijital saat tasarımı için gerekli VHDL kod bloğunun
architecture bölümünü yazınız.

7.1 Aritmetik Operatörler

Architecture davranis of dijital_saat is 
    signal saat, dakika, saniye: integer := 0; 
    signal sayac: integer := 0; 
Begin 
    Process (clk) 
    Begin 
        If rising_edge(clk) then 
            If sayac = (3600*24 - 1) then 
              sayac <= 0; 
            Else  
              sayac <= sayac+1; 
            End if; 
        End if; 
   End process; 
   saat <= sayac / 3600;  
   dakika <= (sayac mod 3600) / 60; 
   saniye <= (sayac mod 60); 
End davranis; 
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Örnek 7.2: Giriş portlarından gelen 2 adet 6-bitlik sayılar üzerine toplama,
çıkarma, çarpma ve bölme işlemlerinin yapıldığı tasarımın VHDL kodunu
yazınız.

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.std_logic_arith.all; 
 
Entity uygulama is  
Port (clk : in std_logic; 
          rst :  in std_logic; 
          sayi1 :  in std_logic_vector (5 downto 0); 
          sayi2 :  in std_logic_vector (5 downto 0); 
          top : out std_logic_vector (7 downto 0); 
          fark: out std_logic_vector (7 downto 0);  
          carp: out std_logic_vector (11 downto 0); 
          bol: out std_logic_vector (7 downto 0)); 
End uygulama; 

 ieee.std_logic_arith.all paketi + conv_std_logic_vector() + conv_integer()

7.1 Aritmetik Operatörler
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Architecture davranis of uygulama is 
Begin 
    Process (clk, rst) 
        variable s1, s2: integer; 
    Begin 
        If (rst=‘1’) then 
            top <= (others=>'0'); 
            fark <= (others=>'0'); 
            carp <= (others=>'0'); 
            bol <= (others=>'0'); 
        Elsif rising_edge(clk) then 
            s1 := conv_integer(signed(sayi1)); 
            s2 := conv_integer(signed(sayi2)); 
            top <= conv_std_logic_vector((s1+s2), top'length); 
            fark <= conv_std_logic_vector((s1-s2), fark'length); 
            carp <= conv_std_logic_vector((s1*s2), carp'length); 
            bol <= conv_std_logic_vector((s1/s2), bol'length); 
        End if; 
    End process; 
End davranis; 

7.1 Aritmetik Operatörler
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Örnek 7.2: Giriş portlarından gelen 2 adet 6-bitlik sayılar üzerine toplama,
çıkarma, çarpma ve bölme işlemlerinin yapıldığı tasarımın VHDL kodunu
yazınız.

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

7.1 Aritmetik Operatörler
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Örnek 7.2: Aynı çözüm (RTL şeması da aynı kalacak şekilde) aşağıdaki
VHDL kodu ile de sağlanır.

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity uygulama is  
Port (clk, rst : in std_logic; 
          sayi1, sayi2 :  in std_logic_vector (5 downto 0); 
          top, fark, bol  : out std_logic_vector (7 downto 0); 
          carp: out std_logic_vector (11 downto 0)); 
End uygulama; 

 ieee.numeric_std.all + std_logic_vector() + to_integer() + to_signed()

7.1 Aritmetik Operatörler
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Örnek 7.2: Aynı çözüm (RTL şeması da aynı kalacak şekilde) aşağıdaki
VHDL kodu ile de sağlanabilir.

 
Architecture davranis of uygulama is 
Begin 
    Process (clk, rst) 
        variable s1, s2: integer; 
    Begin 
        If (rst=‘1’) then 
            top <= (others=>'0'); 
            fark <= (others=>'0'); 
            carp <= (others=>'0'); 
            bol <= (others=>'0'); 
        Elsif rising_edge(clk) then 
            s1 := to_integer(signed(sayi1)); 
            s2 := to_integer(signed(sayi2)); 
            top <= std_logic_vector(to_signed((s1+s2), top'length)); 
            fark <= std_logic_vector(to_signed((s1-s2), fark'length)); 
            carp <= std_logic_vector(to_signed((s1*s2), carp'length));
            bol <= std_logic_vector(to_signed((s1/s2), bol'length)); 
        End if; 
    End process; 
End davranis; 

7.1 Aritmetik Operatörler
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7.2 Öncelikli (Özel) Operatörler

 Öncelikli (özel) operatörler, en yüksek önceliğe sahip operatör tipidir.
Bunlar; üs alma (**), mutlak değer (abs) ve değili / tersi (not) şeklinde
bilinir.

Değili / Tersi İçin Tanımlama Örnekleri;
 not a; // a’ nın tersi,
 not a and b; // a’ nın tersi ve b,
 not (a and b); // (a ve b)’ nin tersi

Öncelikli operatörlere dair işaret ve işlem ilişkisi

İşaret İşlem Örnek 

** Üs Alma 3**2=9 
5**4=625 

ABS Mutlak Değer abs(-3)=3 
abs(5)=5 

NOT Değili / Tersi not 0 = 1 
not 1 = 0 
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Örnek 7.2: Bir değer girişinin ‘3’ üssünü alan tasarım için gerekli VHDL kod 
bloğunun entity ve architecture bölümlerini yazınız.

7.2 Öncelikli (Özel) Operatörler

Entity us_alma is  
Port (giris: in integer; 
          cikis: out integer); 
End us_alma; 
 
Architecture davranis of us_alma is
Begin 
   cikis <= giris**3;  
End davranis; 
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7.2 Öncelikli (Özel) Operatörler

 Ulama operatörü ise ‘&’ (ampersand) işareti ile gösterilir. Bu operatör
vektörleri genişletmek veya birbirine ulamak için işletilir.

Örnek 7.4: 4-bitlik iki adet giriş sinyalini, 8-bitlik ve 4-bitlik (ikinci vektörün
son terimi ve ilk vektörün ilk 3 terimi olacak şekilde) iki ayrı çıkışta
birleştirmek için gerekli VHDL kodunu yazınız.

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity ulama_uyg is  
Port (clk, rst : in std_logic; 
          vektor1, vektor2:  in std_logic_vector (3 downto 0); 
          cikis_8bit : out std_logic_vector (7 downto 0); 
          cikis_4bit: out std_logic_vector (3 downto 0)); 
End ulama_uyg; 
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7.2 Öncelikli (Özel) Operatörler

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Architecture davranis of ulama_uyg is 
Begin 
    Process (clk, rst) 
    Begin 
        If (rst='1') then 
            cikis_8bit  <= (others=>'0'); 
            cikis_4bit <= (others=>'0'); 
        Elsif rising_edge(clk) then 
            cikis_8bit <= vektor2 & vektor1; 
            cikis_4bit <= vektor2(3) & vektor1(2 downto 0);
        End if; 
    End process; 
End davranis; 
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7.3 Mantıksal Operatörler

 En düşük önceliğe sahip olan operatör grubudur.

Mantık operatörleri; bit, bit_vector, boolean, std_logic ve std_logic_vector
türlerindeki veriler tarafından sık kullanılan operatörlerdir.

 Boolean türünde true ifadesi lojik-1’ e karşılık gelirken, false ifadesi lojik-
0’ a denk düşer.

 Özünde NOT operatörü de mantıksal bir operatördür, ancak önceliği farklı
olduğundan Öncelikli (Özel) Operatörler kategorisinde belirtilir.

Mantıksal operatörlerden yalnızca NOT operatörü tek parametrelidir.



17

7.3 Mantıksal Operatörler

 Std_logic, Bit veya Boolean türünde tanımlı a ve b sinyalleri üzerine
mantıksal bir operatörün işletilmesi gerekiyorsa;

Tanımlama komutu: a mantıksal_operatör b şeklinde olmalıdır.

Mantıksal operatörde işlenecek nesnelerin aynı tür ve boyutta olması
gereklidir.

Girişler Çıkışlar 
a b AND NAND OR NOR XOR XNOR 
0 0 0 1 0 1 0 1 
0 1 0 1 1 0 1 0 
1 0 0 1 1 0 1 0 
1 1 1 0 1 0 0 1 

İki parametreli mantıksal operatörlerin doğruluk tablosu
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7.3 Mantıksal Operatörler

 Bazı sentezleyicilerde nand ve nor kapılarına dair komutlar tanımlı değildir.

Farklı sentezleyiciler arası (Quartus, Vivado, Lattice, …) kod aktarımı
yapılacaksa, sıkıntı olmaması adına;

 a nand b = not (a and b) veya

 a nor b = not (a or b) şeklinde yazım da tercih edilebilir.

Girişler Çıkışlar 
a b AND NAND OR NOR XOR XNOR 
0 0 0 1 0 1 0 1 
0 1 0 1 1 0 1 0 
1 0 0 1 1 0 1 0 
1 1 1 0 1 0 0 1 

İki parametreli mantıksal operatörlerin doğruluk tablosu



Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity yari_toplayici is  
Port (clk, rst, a, b: in std_logic; 
          s,c: out std_logic); 
End yari_toplayici; 
 
Architecture davranis of yari_toplayici is 
Begin 
    Process (clk, rst) 
    Begin 
        If (rst='1') then 
            s  <= '0'; 
            c  <= '0'; 
        Elsif rising_edge(clk) then 
            s  <= a xor b; 
            c  <= a and b; 
        End if; 
    End process; 
End davranis; 19

7.3 Mantıksal Operatörler
Örnek 7.5: Mantıksal yarı toplayıcı devresinin VHDL yazılımını, clk ve rst
sinyallerine bağlı olarak (ardışıl tasarım temelinde) gerçekleştiriniz.

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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7.4 Kaydırma Operatörleri

 Kaydırma operatörleri, sıklıkla bit_vector ve std_logic_vector (unsigned veya
signed’a çevirilen) türündeki tek boyutlu vektörlerde kaydırma işlemi için kullanılır.

 İşlem neticesinde aynı boyutta ve türde vektör oluşur. Kaydırma işlemleri
mantıksal ve aritmetik olmak üzere ikiye ayrılır.

Kaydırma Operatörleri İşlev 

Mantıksal  

Shift Left Logic (SLL) 

Vektör içindeki elemanları operatörün 
sağında tanımlı olan sayı kadar sola 

kaydırır. Herbir kaymada en soldaki eleman 
atılırken, en sağdan ‘0’ değeri eklenir. 

V <= "00001111"; 
Y <= V SLL 1; 

Sonuç; 
Y <= "00011110"; 

Shift Right Logic (SRL) 

Vektör içindeki elemanları operatörün 
sağında tanımlı olan sayı kadar sağa 

kaydırır. Herbir kaymada en sağdaki eleman 
atılırken, en soldan ‘0’ değeri eklenir. 

V <= "01100111"; 
Y <= V SRL 2; 

Sonuç; 
Y <= "00011001"; 

Aritmetik 

Shift Left Arithmetic (SLA) 

Vektör içindeki elemanları operatörün 
sağında tanımlı olan sayı kadar sola 

kaydırır. Herbir kaymada LSB biti 
tekrarlanarak sağdan eklenir. 

V <= "00100011"; 
Y <= V SLA 2; 

Sonuç; 
Y <= "10001111"; 

Shift Right Arithmetic (SRA) 

Vektör içindeki elemanları operatörün 
sağında tanımlı olan sayı kadar sağa 

kaydırır. Herbir kaymada MSB biti 
tekrarlanarak soldan eklenir. 

V <= "01100010"; 
Y <= V SRA 1; 

Sonuç; 
Y <= "00110001"; 
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7.4 Kaydırma Operatörleri

 Görülen örnekte decimal 7 sayısı SLL operatörü ile ötelenmiş (‘0’ biti
eklenerek sola kaydırılmış) ve decimal 14 sayısı elde edilmiştir.

 İkili sayılarda ‘0’ biti ile kaydırma mantığı gereği; sola kaydırmada ‘*2’
işlemi yapılırken, sağa kaydırmada ‘/2’ işlemi yapılır.

SRA ve SLL kaydırma örnekleri
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7.4 Kaydırma Operatörleri
SRA ve SLL kaydırma örnekleri

 Aritmetik kaydırma işlemi, genelde negatif sayıları işlemede (tümleyeni
alınmış) değerler için işaret bitinin kaybolmamasını sağlar.
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7.4 Kaydırma Operatörleri
SRA ve SLL kaydırma örnekleri

 Şekilde görüldüğü gibi, tümleyeni alınmış (negatif) işaretli sayının SRA
kullanılarak ötelenmesi gereklidir.

Aksi takdirde negatif sayı üzerine ‘/2’ işlemi gerçekleştirilemez.
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Örnek 7.6: Aşağıda belirtilen VHDL koduna göre sonuc1, sonuc2, sonuc3 ve
sonuc4 nesnelerinin ikili karşılıklarını yazınız.

 Kaydırma operatörlerinin kullanılması için aşağıdaki komutun (numeric_std
paketinin) işletilmesi gereklidir:

Paket tanımlama komutu: Use ieee.numeric_std.all;

7.4 Kaydırma Operatörleri

sonuc1 =  10100100 
sonuc2 =  00011010 
sonuc3 =  10100111 
sonuc4 =  00011010 

Entity kaydirma_uyg is  
Port (sonuc1, sonuc2, sonuc3, sonuc4: out bit_vector(7 downto 0)); 
End kaydirma_uyg; 
 
Architecture davranis of kaydirma_uyg is 
    signal vektor: bit_vector (7 downto 0) := "01101001"; 
Begin 
    sonuc1 <= vektor sll 2; 
    sonuc2 <= vektor srl 2; 
    sonuc3 <= vektor sla 2; 
    sonuc4 <= vektor sra 2; 
End davranis; 
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7.5 Çevirme / Döndürme Operatörleri
 Çevirme / Döndürme operatörleri, sıklıkla bit_vector ve std_logic_vector (unsigned
veya signed’a çevirilen) türündeki tek boyutlu vektörlerde döndürme işlemi için
kullanılır. Sonuçta aynı tür ve boyutta yeni bir vektör elde edilir.

Sağa döndürme (Rotate Right  ROR) işleminde vektör içindeki değerler sağa
kaydırılırken, LSB biti MSB’ nin yerini alır (dizi soluna LSB gelir).

 Sola döndürme (Rotate Left  ROL) işleminde vektör içindeki değerler sola
kaydırılırken, MSB biti LSB’ nin yerini alır (dizi sağına MSB gelir).

ROR ve ROL ile döndürme örnekleri
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Örnek 7.7: Aşağıda belirtilen VHDL koduna göre sonuc1, sonuc2, sonuc3 ve
sonuc4 nesnelerinin ikili karşılıklarını yazınız.

 Döndürme operatörlerinin kullanılması için aşağıdaki komutun (numeric_std
paketinin) işletilmesi gereklidir:

Paket tanımlama komutu: Use ieee.numeric_std.all;

7.5 Çevirme / Döndürme Operatörleri

sonuc1 =  11010010 
sonuc2 =  10100101 
sonuc3 =  10110100 
sonuc4 =  01011010 

Entity dondurme_uyg is  
Port (sonuc1, sonuc2, sonuc3, sonuc4: out bit_vector(7 downto 0)); 
End dondurme_uyg; 
 
Architecture davranis of dondurme_uyg is 
    signal vektor: bit_vector (7 downto 0) := "01101001"; 
Begin 
    sonuc1 <= vektor rol 1; 
    sonuc2 <= vektor rol 2; 
    sonuc3 <= vektor ror 1; 
    sonuc4 <= vektor ror 2; 
End davranis; 
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7.6 Karşılaştırma Operatörleri

 İki adet aynı türden veriyi karşılaştıran ve boolean türünde (true veya false) veri
üreten operatörlerdir.

 Bu operatörler IF ve WHEN yapıları ile sıklıkla kullanılır. Vektör şeklinde tanımlı
nesneler karşılaştırılacağı zaman, dizi türü ve boyutları aynı olmak zorundadır.

Karşılaştırma Operatörleri

Operatör Sembolü İşlev 

a = b Eşittir a eşit b 

a /= b Eşit değil a eşit değil b 

a < b Küçüktür a küçük b 

a <= b Küçük eşit a küçük veya eşit b 

a > b Büyüktür a büyük b 

a >= b Büyük eşit a büyük veya eşit b 
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8. KOMBİNASYONEL LOJİK DEVRELER

 VHDL tasarım dili ile sonradan değiştirilebilir sayısal devre tasarımları
gerçekleştirilebilmektedir.

 Bu devre tiplerinden biri de kombinasyonel devrelerdir.

 Bu devreler, herhangi bir hafıza birimi içermezler ve girişindeki veriyi
tasarım fonksiyonuna göre işleyerek doğrudan çıkış üretirler.

Mantık kapıları ile gerçeklenen devreler olmak üzere; toplayıcı, çoklayıcı
ve kodlayıcı gibi devreler kombinasyonel devre tasarımı ile gerçeklenir.
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 Katmanlı devre tasarımlarında, blok çıkışları için ara kablo bağlantıları
belirtilerek komplike tasarımlarda esneklik sağlanır.

 Bu kablo bağlantıları genelde sinyal türünde tanımlanır.

 Ara kablo bağlantısı kullanmadan da yalın kodlar ile tasarım
sağlanabilmektedir.

Örnek 8.1: Aşağıda belirtilen devreyi VHDL dilinde tasarlayınız.

8.1 Katmanlı Devre Tasarımı
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Örnek 8.1: Belirtilen
devreyi VHDL dilinde
tasarlayınız.

8.1 Katmanlı Devre Tasarımı

Ara kablo kullanmadan; 

f <= ((a nand b) or c) nor d;

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity eszamanli_islem is  
Port (a, b, c, d : in std_logic; 
          f : out std_logic); 
End eszamanli_islem; 
 
Architecture davranis of eszamanli_islem is 
    signal e1, e2: std_logic;  -- ara kablo tanımlaması 
Begin 
    e1 <= a nand b; -- kablo ara sonucu 
    e2 <= e1 or c; -- kablo ara sonucu 
    f <= e2 nor d; 
End davranis; 
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8.1 Katmanlı Devre Tasarımı

 Bazı sentezleyicilerde nand ve nor kapılarına dair komutlar tanımlı değildir.

Farklı sentezleyiciler arası (Quartus, Vivado, Lattice, …) kod aktarımı
yapılacaksa, sıkıntı olmaması adına;

 a nand b = not (a and b) veya

 a nor b = not (a or b) şeklinde yazım da tercih edilebilir.

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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Örnek 8.2: Aşağıda belirtilen devreyi VHDL dilinde tasarlayınız.

8.1 Katmanlı Devre Tasarımı

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity karma_islem is  
Port (a, b, c : in std_logic; 
          f1, f2 : out std_logic); 
End karma_islem; 
 
Architecture davranis of karma_islem is 
    signal e1, e2: std_logic;  -- ara kablo tanımlaması 
Begin 
    e1 <= not a and b; -- kablo ara sonucu 
    e2 <= b or c; -- kablo ara sonucu 
    f1 <= not e1 xor e2; 
    f2 <= e2 nand c; 
End davranis; 

Ara kablo kullanmadan; 

f1 <= (not (not a and b)) xor (b or c); 

f2 <= (b or c) nand c; 
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Örnek 8.2: Aşağıda belirtilen devreyi VHDL dilinde tasarlayınız.

8.1 Katmanlı Devre Tasarımı

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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 Lojikte çoklayıcı veya multiplexer olarak bilinen ve bir grup girişten
yalnızca bir tanesini seçerek çıkışa aktaran kombinasyonel elemandır.

 İşlemci birimleri gibi komplike yapıların en temel bileşenlerinden birisidir.

8.2 Çoklayıcılar

 Bir çoklayıcının normal giriş portlarının 
yanısıra seçme girişleri de bulunur ve 
seçme girişlerinin alacağı duruma göre 
gerekli girişin çıkışa aktarılması 
sağlanır. 

 Çoklayıcıların VHDL içinde 
tanımlamaları, birçok farklı 
kombinasyonel elemanın tanımlanmasını 
sağlayan koşullu atama veya seçmeli 
atama ile sağlanabilir.

Çoklayıcı (Multiplexer) yapısı
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 Bir sinyal nesnesine; belirli bir grup değerden yalnızca birinin
aktarılması için, gerekli şart yerine geldiği durumda atama sağlayan
işlemdir.

 Koşullu atama işlemi When-Else ifadesi işletilerek sağlanır ve tümleşik
devre tasarımlarında sıklıkla tercih edilir.

 Gerekli koşul When ifadesinden sonra yazılır.

Tanımlama komutu: f <= ifade_1 When kosul_1 Else

ifade_2 When kosul_2 Else

…

ifade_n;

8.3 Koşullu Atamalar (When-Else)
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 2:1 MUX yapısına dair doğruluk tablosu yan tarafta
sunulmuştur.

8.3 Koşullu Atamalar (When-Else)

 İki bit giriş olduğundan ve seçme ucunun da analize
dâhil edilmesi gerektiğinden 3 bitlik durumun
incelenmesi gerekir.

s a b f 

0 

0 0 0 
0 1 0 
1 0 1 
1 1 1 

1 

0 0 0 
0 1 1 
1 0 0 
1 1 1 

 Buna göre ‘s’ seçme ucu ‘0’ olduğu durumda ‘a’ girişi
f çıkışına aktarılır ve s=1 olduğu durumda ‘b’ girişi f
çıkışına aktarılacaktır.

When-Else ifadesi ile VHDL kodu aşağıdaki gibi yazılabilir.

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity multiplexer_kodu is  
Port (a, b, s : in std_logic; 
          f : out std_logic); 
End multiplexer_kodu; 

Architecture davranis of multiplexer_kodu is 
Begin 
    f <= a When s='0' Else -- s=0 ise a değerini ata 
            b When s='1' Else -- s=1 ise b değerini ata 
            'Z'; --eğer seçme sinyali lojik-0 veya lojik-1 
değilse Z ata 
End davranis; 
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8.3 Koşullu Atamalar (When-Else)
Vivado / 

Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity multiplexer_kodu is  
Port (a, b, s : in std_logic; 
          f : out std_logic); 
End multiplexer_kodu; 

Architecture davranis of multiplexer_kodu is 
Begin 
    f <= a When s='0' Else -- s=0 ise a değerini ata 
            b When s='1' Else -- s=1 ise b değerini ata 
            'Z'; --eğer seçme sinyali lojik-0 veya lojik-1 
değilse Z ata 
End davranis; 

Sentezlenemedi
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8.3 Koşullu Atamalar (When-Else)

Örnek 8.3: VHDL dilinde 
yazılmış bir yapay zekâ 
sınıflandırma algoritması 
ile akciğer verilerine dair 4 
farklı sınıfın ayırt edilmesi 
istenmiştir. 

Bu sınıflar; sağlıklı (00), 
bronşit (01), astım (10) ve 
nodül (11) şeklindedir. 

Yapay zekâ çıkış birimi 
için gerekli VHDL 
sınıflama kodunu yazınız.

(Not: yapay zekâ çıkışı 
MUX seçme ucuna göre 
atanacaktır ve herbir sınıf 
MUX girişidir)

Library ieee; 
Use ieee.std_logic_1164.all; 
Use std.textio.all; 
 
Entity cikis_birimi is  
Port (secim : in std_logic_vector (1 downto 0); 
          cikis : out string (1 to 3)); 
End cikis_birimi; 
 
Architecture davranis of cikis_birimi is 
Begin 
   cikis <=  "SAG" When secim = "00" Else 
                  "BRO" When secim = "01" Else 
                  "AST" When secim = "10" Else 
                  "NOD" When secim = "11" Else 
                  "XXX"; 
End davranis; 
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8.3 Koşullu Atamalar (When-Else)

Bu sınıflar; 
sağlıklı (00), 
bronşit (01), 
astım (10) ve 
nodül (11) 
şeklindedir. 

Architecture davranis of cikis_birimi is 
Begin 
   cikis <=  "SAG" When secim = "00" Else 
                  "BRO" When secim = "01" Else 
                  "AST" When secim = "10" Else 
                  "NOD" When secim = "11" Else 
                  "XXX"; 
End davranis; 

Karakter türü 
sentezlenemez

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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 Tümleşik devrelerde sıklıkla tercih edilen bir diğer atama yöntemi de With-
Select ifadesidir.

 Seçimli atama olarak bilinen bu atama yöntemi, koşullu yöntem olan
When-Else ifadesine benzer, ancak yazım biçimi bakımından farklılık
gösterir.

 Genel programlama dillerinde Switch-Case ifadesine benzer işlev görür.

 Gerekli seçme deyimi With ve Select ifadeleri arasına, seçme deyiminin
alabileceği ifadeler When sonrasına, seçime göre gerekli koşul ise When
öncesine yazılır.

 Tek çıkışın olduğu kombinasyonel tümleşik tasarımlarda sıklıkla tercih
edilir.

8.4 Seçimli Atamalar (With-Select)



15

Tanımlama komutu: With secme_deyimi Select
f <= ifade_1 When secenek_1,

ifade_2 When secenek_2,
…
ifade_n When Others;

8.4 Seçimli Atamalar (With-Select)

 Çoklayıcı (Multiplexer) yapısının When-Else yerine With-Select ifadesi
üzerinden eldesini inceleyelim.

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity multiplexer_kodu is  
Port (a, b, s : in std_logic; 
          f : out std_logic); 
End multiplexer_kodu; 

Architecture davranis of multiplexer_kodu is 
Begin 
    With s Select 
        f <= a When '0', 
                b When '1', 
                'Z' When Others; 
End davranis; 
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8.4 Seçimli Atamalar (With-Select)

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity multiplexer_kodu is  
Port (a, b, s : in std_logic; 
          f : out std_logic); 
End multiplexer_kodu; 

Architecture davranis of multiplexer_kodu is 
Begin 
    With s Select 
        f <= a When '0', 
                b When '1', 
                'Z' When Others; 
End davranis; 

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Sentezlenemedi
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8.4 Seçimli Atamalar (With-Select)

Örnek 8.4: Örnek 8.3’ teki cevabı With-Select ifadesi ile gerçekleyiniz.

Library ieee; 
Use ieee.std_logic_1164.all; 
Use std.textio.all; 
 
Entity cikis_birimi is 
Port (secim : in std_logic_vector (1 downto 0); 
          cikis : out string (1 to 3)); 
End cikis_birimi; 
 
Architecture davranis of cikis_birimi is 
Begin 
    With secim Select 
        cikis <= "SAG" When "00", 
                      "BRO" When "01", 
                      "AST" When "10", 
                      "NOD" When "11", 
                      "XXX" When Others; 
End davranis; 
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8.4 Seçimli Atamalar (With-Select)

Örnek 8.4:
Örnek 8.3’ 
teki cevabı
With-Select
ifadesi ile
gerçekleyiniz.

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Karakter türü 
sentezlenemez
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 Çoklayıcıların gerçekleştirdiği işlevin tam tersini sağlarlar.

 Giriş portundaki veriyi, seçme uçlarına göre istenilen çıkışa aktarır.
Tekleyici gösterimi, çoklayıcının dikeyde aynalanmış halidir.

8.5 Tekleyiciler

Tekleyici (Demultiplexer) yapısı
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 1:4 Tekleyici (Demultiplexer) için gerekli VHDL konunu, 3 bitlik veri
işletilecek şekilde (With-Select ifadesi üzerinden yazımı daha fazla kod satırı
içereceğinden) When-Else ifadesi üzerinden yazalım.

8.5 Tekleyiciler

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity demux_1e4 is 
Port (giris : in std_logic_vector (2 downto 0); 
          secim : in std_logic_vector (1 downto 0); 
          Q0, Q1, Q2, Q3 : out std_logic_vector (2 downto 0));
End demux_1e4; 
 
Architecture davranis of demux_1e4 is 
Begin 
          Q0 <= giris When secim="00" Else "ZZZ"; 
          Q1 <= giris When secim="01" Else "ZZZ"; 
          Q2 <= giris When secim="10" Else "ZZZ"; 
          Q3 <= giris When secim="11" Else "ZZZ"; 
End davranis; 
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8.5 Tekleyiciler Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Derleyici yüksek 
empedansı temsili 

olarak tri-state buffer
karşılığı ile gerçekledi. 
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 Kodlama, veriyi farklı formalara dönüştürmek için işletilir.

 BCD, Gray, Excess-3 kodlama gibi farklı formlarda birçok kodlama
yöntemi mevcuttur.

Yine lojik tabanda kodlayıcı (encoder) yapısı en temel kodlayıcı
formudur.

8.6 Kodlama Devresi

4:2 Encoder yapısı

 Kodlayıcılar, çoklayıcı ve tekleyicilerde
olduğu gibi giriş : çıkış basamaklarına göre
isimlendirilir.

 Buna göre 4 girişi ve 2 çıkışı olan bir
kodlayıcı yapısının gösterimi için 4:2
Kodlayıcı ifadesi yazılır.
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 Lojik tabanda en temel kodlayıcı olan encoder yapısı için 4:2 
giriş:çıkış olacak şekilde VHDL kodunu When-Else ifadesi ile yazalım.

8.6 Kodlama Devresi

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity encoder_4e2 is  
Port (giris : in std_logic_vector (3 downto 0); 
          cikis : out std_logic_vector (1 downto 0)); 
End encoder_4e2; 

Architecture davranis of encoder_4e2 is 
Begin 
          cikis <= "00" When giris = "0001" Else 
                        "01" When giris = "0010" Else 
                        "10" When giris = "0100" Else 
                        "11" When giris = "1000" Else 
                        "ZZ"; 
End davranis; 



24

 Lojik tabanda en temel kodlayıcı olan encoder yapısı için 4:2 
giriş:çıkış olacak şekilde VHDL kodunu When-Else ifadesi ile yazalım.

8.6 Kodlama Devresi

Derleyici yüksek 
empedansı temsili 

olarak tri-state buffer
karşılığı ile gerçekledi. 

 

Architecture davranis of encoder_4e2 is 
Begin 
          cikis <= "00" When giris = "0001" Else 
                        "01" When giris = "0010" Else 
                        "10" When giris = "0100" Else 
                        "11" When giris = "1000" Else 
                        "ZZ"; 
End davranis; Vivado / 

Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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 Kod çözücü birimler, kodlayıcılar tarafından kodlanmış verinin ilk halini
elde etmek amacıyla işletilir.

 Decoder olarak da bilinen bu yapılar; RAM ve tampon belleklerde gerekli
bellek bölümünü adreslemek, 7-segment display sürmek ve veri çoklama gibi
birçok amaç için kullanılır.

 Kod çözücülerde de kodlayıcılarda olduğu gibi isimlendirme yapılır.

8.7 Kod Çözücü Devre Tasarımı

2:4 Decoder yapısı

 Örneğin; 2 girişi ve 4 çıkışı olan bir
decoder yapısının gösterimi için 2:4 Decoder
ifadesi yazılır.
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 Bu kod çözücünün VHDL kodunu When-Else ifadesi üzerinden yazalım

8.7 Kod Çözücü Devre Tasarımı

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity decoder_2e4 is  
Port (giris : in std_logic_vector (1 downto 0); 
          cikis : out std_logic_vector (3 downto 0));
End decoder_2e4; 

Architecture davranis of decoder_2e4 is 
Begin 
          cikis <= "0001" When giris = "00" Else 
                        "0010" When giris = "01" Else 
                        "0100" When giris = "10" Else 
                        "1000" When giris = "11" Else 
                        "ZZZZ"; 
End davranis; 
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 Bu kod çözücünün VHDL kodunu When-Else ifadesi üzerinden yazalım

8.7 Kod Çözücü Devre Tasarımı

Architecture davranis of decoder_2e4 is 
Begin 
          cikis <= "0001" When giris = "00" Else 
                        "0010" When giris = "01" Else 
                        "0100" When giris = "10" Else 
                        "1000" When giris = "11" Else 
                        "ZZZZ"; 
End davranis; 

Derleyici yüksek 
empedansı temsili 

olarak tri-state buffer
karşılığı ile gerçekledi. 

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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Lojik tasarımın en temel bölümlerinden biri olduğundan birçok toplama
devresi tasarımı mevcuttur.

 Aritmetik işlemlerin sağlanabilmesi için Std_logic_arith / Numeric_std
paketinin tanımlanması gerekir.

 Normal bir toplamada iki adet n bitlik sayı toplandığı zaman, (n+1) bit
çıkış elde edilecektir. Bu noktada (n+1). bit elde çıkışını tutar.

8.8 Toplama Devreleri

4 bitlik toplama işlemi örneği
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 4 bitlik iki sayının 
toplanmasını sağlayan 
toplama devresi için 
gerekli kodu VHDL dilinde 
yazalım. 

 Kod yazmada kolaylık 
sağlanması için, generic
deyimi ile bu işlemi 
gerçekleştirelim.

8.8 Toplama Devreleri
Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.std_logic_arith.all; 
Use ieee.std_logic_unsigned.all; 
 
Entity toplayici_4bit is  
Generic (k : natural := 4); 
Port (A : in std_logic_vector (k-1 downto 0); 
          B : in std_logic_vector (k-1 downto 0); 
          elde : out std_logic; 
          fcik : out std_logic_vector (k-1 downto 0)); 
End toplayici_4bit; 
 
Architecture davranis of toplayici_4bit is 
    signal ara_islem : std_logic_vector (k downto 0);   
Begin 
          ara_islem <= (‘0’ & A) + (‘0’ & B); 
          fcik <= ara_islem (k-1 downto 0); 
          elde <= ara_islem (k); 
End davranis; 

Tasarım-1
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 4 bitlik iki sayının 
toplanmasını sağlayan 
toplama devresi için 
gerekli kodu VHDL 
dilinde yazalım.

8.8 Toplama Devreleri

Architecture davranis of toplayici_4bit is 
    signal ara_islem : std_logic_vector (k downto 0);   
Begin 
          ara_islem <= (‘0’ & A) + (‘0’ & B); 
          fcik <= ara_islem (k-1 downto 0); 
          elde <= ara_islem (k); 
End davranis; 

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Tasarım-1
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8.8 Toplama Devreleri

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity toplayici_4bit is  
Generic (k : natural := 4); 
Port (A, B : in std_logic_vector (k-1 downto 0); 
          elde : out std_logic; 
          fcik : out std_logic_vector (k-1 downto 0)); 
End toplayici_4bit; 
 
Architecture davranis of toplayici_4bit is 
    signal ara_islem : unsigned (k downto 0);   
Begin 
          ara_islem <= unsigned('0' & A) + unsigned('0' & B);
          fcik <= std_logic_vector(ara_islem (k-1 downto 0)); 
          elde <= ara_islem (k); 
End davranis; 

Tasarım-2
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8.8 Toplama Devreleri

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Architecture davranis of toplayici_4bit is 
    signal ara_islem : unsigned (k downto 0);   
Begin 
          ara_islem <= unsigned('0' & A) + unsigned('0' & B);
          fcik <= std_logic_vector(ara_islem (k-1 downto 0)); 
          elde <= ara_islem (k); 
End davranis; 

Tasarım-2
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 Karşılaştırma işlemi, iki terimin üç koşulda kıyaslanması amacıyla
kullanılır.

Matematiksel anlamda da kıyaslamada; değerlerden birisinin diğerinden
küçük, diğerinden büyük veya birbirlerine eşit olma durumları meydana
gelebilir.

 Bu bağlamda kıyaslama devreleri, n bitlik iki girişe göre üç farklı
durumun analizini sağlarlar.

 4 bitlik iki sayının kıyaslanmasını sağlayan devreyi When-Else ifadesi
üzerinden yazalım.

8.9 Karşılaştırma Devresi
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 Bu noktada matematiksel olarak üç durumdan yalnızca birisi etkin
olabileceği için, herbir seçenekte Else sonrası ‘0’ yazılması gereklidir.

8.9 Karşılaştırma Devresi

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity karsilastir_4bit is  
Generic (n : natural := 4); 
Port (sayi1, sayi2 : in std_logic_vector (n-1 downto 0);
          kucuk, esit, buyuk : out std_logic); 
End karsilastir_4bit; 

Architecture davranis of karsilastir_4bit is 
Begin 
          kucuk <= '1' When sayi1<sayi2 Else '0'; 
          esit <= '1' When sayi1=sayi2 Else '0'; 
          buyuk <= '1' When sayi1>sayi2 Else '0'; 
End davranis; 
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8.9 Karşılaştırma Devresi

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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8.10 Aritmetik Mantık Birimi

Aritmetik Mantık Birimi 
(AMB) genel şeması

 Aritmetik Mantık Birimi (AMB); aritmetik ve lojik işlemleri bir arada
gerçekleştirmeyi sağlayan, mikrodenetleyiciden mikroişlemciye kadar birçok
işlemci biriminin yapıtaşı niteliğinde olan sayısal devredir.

Aşağıdaki şekilde görüldüğü üzere; A ve B iki veriye dair giriş portlarını,
kmt işlem seçme ucunu ve F ise sistem çıkış portunu simgeler.
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Aşağıdaki şekilde ise kullanıcı isteği doğrultusunda tasarlanmış bir AMB
içyapısı yer almakta, seçme ucuna göre işlem sırası ise tabloda
sunulmaktadır.

8.10 Aritmetik Mantık Birimi

Tasarlanan Örnek AMB iç yapısı

Tasarlanan AMB’ nin işlem sırası

İşlem Kodu (kmt) İşlem 
00 Çıkarma 
01 Toplama 
10 VEYA 
11 VE 
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 Giriş verileri 4 bit olduğu durum için gerekli VHDL kodunu önce With-
Select sonra da When-Else ifadeleri üzerinden yazalım.

8.10 Aritmetik Mantık Birimi

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.std_logic_unsigned.all; 
Use ieee.std_logic_arith.all; 
 
Entity ornek_AMB is  
Port (A, B : in std_logic_vector (3 downto 0); 
          kmt : in std_logic_vector (1 downto 0); 
          F : out std_logic_vector (3 downto 0)); 
End ornek_AMB; 
Architecture davranis of ornek_AMB is 
Begin 
    With kmt Select 
        F <= A - B  When  "00", 
                 A + B  When  "01", 
                 A or B  When  "10", 
                 A and B  When  "11", 
                 "ZZZZ"  When  Others; 
 End davranis; 

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.std_logic_unsigned.all; 
Use ieee.std_logic_arith.all; 
 
Entity ornek_AMB is  
Port (A, B : in std_logic_vector (3 downto 0); 
          kmt : in std_logic_vector (1 downto 0); 
          F : out std_logic_vector (3 downto 0)); 
End ornek_AMB; 
Architecture davranis of ornek_AMB is 
Begin 
    F <= A - B  When  kmt = "00" Else 
             A + B  When  kmt = "01" Else 
             A or B  When  kmt = "10" Else 
             A and B  When  kmt = "11" Else 
             "ZZZZ"; 
End davranis; 

Tasarım-1 Tasarım-2
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Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Tasarım-18.10 Aritmetik Mantık Birimi

Tasarım-2

 Giriş verileri 4 bit olduğu
durum için gerekli VHDL kodunu
önce With-Select sonra da
When-Else ifadeleri üzerinden
yazalım.
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Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity ornek_AMB is  
Port (A, B : in std_logic_vector (3 downto 0); 
          kmt : in std_logic_vector (1 downto 0); 
          F : out std_logic_vector (3 downto 0)); 
End ornek_AMB; 

Architecture davranis of ornek_AMB is 
Begin 
    With kmt Select 
        F <= std_logic_vector(unsigned(A) - unsigned (B))  When  "00", 
                 std_logic_vector(unsigned(A) + unsigned (B))  When  "01", 
                 A or B  When  "10", 
                 A and B  When  "11", 
                 "ZZZZ"  When  Others; 
 End davranis; 

 Giriş verileri 4 bit olduğu durum için gerekli VHDL kodunu önce With-
Select sonra da When-Else ifadeleri üzerinden yazalım.

8.10 Aritmetik Mantık Birimi

Tasarım-3
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 Giriş verileri 4 bit olduğu durum için gerekli VHDL kodunu önce With-
Select sonra da When-Else ifadeleri üzerinden yazalım.

8.10 Aritmetik Mantık Birimi

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity ornek_AMB is  
Port (A, B : in std_logic_vector (3 downto 0); 
          kmt : in std_logic_vector (1 downto 0); 
          F : out std_logic_vector (3 downto 0)); 
End ornek_AMB; 

Architecture davranis of ornek_AMB is 
Begin 
    F <= std_logic_vector(unsigned(A) - unsigned (B)) When  kmt = "00" Else 
             std_logic_vector(unsigned(A) + unsigned (B)) When  kmt = "01" Else
             A or B  When  kmt = "10" Else 
             A and B  When  kmt = "11" Else 
             "ZZZZ"; 
End davranis; 

Tasarım-4
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 Giriş verileri 4 bit olduğu
durum için gerekli VHDL
kodunu önce With-Select
sonra da When-Else ifadeleri
üzerinden yazalım.

8.10 Aritmetik Mantık Birimi

Tasarım-4

Tasarım-3

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)



43

 Giriş verileri 4 bit olduğu
durum için gerekli VHDL
kodunu önce With-Select
sonra da When-Else ifadeleri
üzerinden yazalım.

8.10 Aritmetik Mantık Birimi

Tasarım-1

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Tasarım-3
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8.10 Aritmetik Mantık Birimi

Tasarım-2

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Tasarım-4
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8.11 For-Generate Ataması

 Tekrar edilmesi istenen basit işlemler için kullanılır. Tasarım noktasında
atama bloğu eş zamanlı (paralel) çalışır.

 Sayısal devre karşılığı olarak, bir mantıksal yapıyı (döngü üzerinden)
çoğaltır (örn: sıralı XOR işleminin paralel tanımlanması).

 Bu atamayla üretilen elemanlar birbirine benzer türetilir ve üretilecek
kopya adedince döngü değişkeni için aralık ayarlanır. Bu döngü değişkeni,
dizi elemanlarını indekslemek için kullanılır.

 Etiket kullanımı zorunludur.

 For ifadesi ardışıl işlem olmasına karşın, Generate ifadesi ile
kullanıldığında elemanların eş zamanlı (paralel) bağlantıları yapılır.
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8.11 For-Generate Ataması

 For-Generate ataması için genel tanımlama aşağıdaki görüldüğü gibidir.
Tanımlı olduğu aralık statik (generic veya sabit) belirtilmelidir.

 Kullanım alanı sınırlıdır.

 Çıkış portuna doğrudan atama yapılamaz (vektörel çıkış için bit
düzeyinde teker teker atama yapılabilir).

 Yine giriş portundan doğrudan veri üzerinde işlem yapamaz (vektörel
giriş için bit düzeyinde teker teker okuma yapılabilir).

 

Etiket: For parametre in baslangic_deger to bitis_deger generate  
   Eşzamanlı ifade(ler)… 
End generate Etiket; 
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8.11 For-Generate Ataması

• 8 bitlik girdide eşlik bitini (girdideki ‘1’ lerin sayısı çift ise 0, tek ise 1 değerini alan
bit – parity biti) sağlayan VHDL kodunu For-Generate ifadesi üzerinden yazalım.

cikti_vek(i+1) <= cikti_vek(i) xor girdi(i);

Girdi 1 0 0 0 0 0 1 1

cikti_vek 0 0 0 0 0 0 0 00

Giriş portu olsun

Tanımladığımız 
sinyal olsun

Sayı=3, tektir, 
parity bit=1

Eşlik Biti 
(Parity Bit)1 0 0 0 0 0 1 1xor xor xor xor xor xor xor =

Girdi 1 0 0 0 0 0 1 1
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8.11 For-Generate Ataması

• 8 bitlik girdide eşlik bitini (girdideki ‘1’ lerin sayısı çift ise 0, tek ise 1 değerini alan
bit – parity biti) sağlayan VHDL kodunu For-Generate ifadesi üzerinden yazalım.

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity eslik_biti is  
Generic (n: natural := 8); 
Port (girdi : in std_logic_vector (n-1 downto 0); 
          es_cikis : out std_logic); 
End eslik_biti; 
 
Architecture davranis of eslik_biti is 
Signal cikti_vek : std_logic_vector (n downto 0):= (others=> '0'); 
Begin 
 
Eslik_biti: For i in 0 to n-1 generate 
    cikti_vek(i+1) <= cikti_vek(i) xor girdi(i); 
End generate Eslik_biti; 
 
es_cikis <= cikti_vek(n); 
 
End davranis; 

cikti_vek(0) <=  '0';
yazılırsa ilk değer 
sürekli lojik-0 olur. 

Sentezleme aşaması 
garanti altına alınır. 
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8.11 For-Generate Ataması

• 8 bitlik girdide eşlik bitini
(girdideki ‘1’ lerin sayısı çift
ise 0, tek ise 1 değerini alan
bit – parity biti) sağlayan
VHDL kodunu For-Generate
ifadesi üzerinden yazalım.

Architecture davranis of eslik_biti is 
Signal cikti_vek : std_logic_vector (n downto 0):= (others=> '0'); 
Begin 
 
Eslik_biti: For i in 0 to n-1 generate 
    cikti_vek(i+1) <= cikti_vek(i) xor girdi(i); 
End generate Eslik_biti; 
 
es_cikis <= cikti_vek(n); 
 
End davranis; 

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Girdi 1 0 0 0 0 0 1 1

cikti_vek 0 0 0 0 0 0 0 00

cikti_vek(0) <=  '0';
yazılırsa ilk değer 
sürekli lojik-0 olur. 

Sentezleme aşaması 
garanti altına alınır. 

Bu örnekte derleyici, bu komut yazılmamasına
karşın sentezlemeyi doğru yapmış.
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8.12 If-Generate Ataması

 Bir elemanın veya komponentin devreye eklenmesi bir koşula bağlı olduğu
durumda kullanılır.

 Bu atama kapsamında koşullu ifade için dallanma olmaz (ardışıl kontrol
mekanizması olarak işletilen Else veya Elsif kalıpları If sonrası kullanılamaz).

 Eş zamanlı – koşullu durum için kullanılır ve port bilgilerine dair şart
kullanılamaz. Statik bir parametre üzerinden koşul sağlanır (bu nedenle
nadir kullanılır). Koşul, sentezde bilinen (kesin) generic veya sabitler
üzerinden tanımlanabilir.

 If-Generate ataması için genel tanımlama aşağıdaki görüldüğü gibidir.

 

Etiket: If (koşul) generate  
   Eşzamanlı ifade(ler)… 
End generate Etiket; 
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8.12 If-Generate Ataması

Örnek: Şifreleme amacıyla istenilen bir tasarımda, 6 veya üzeri çift sayılarda

tanımlanabilen (n bitlik) girdi port bilgisi için;

1) Bilginin ilk yarı bölümünün (n/2-1 downto 0), sabit bir anahtar olan ve giriş bit

sayısının yarısına göre tanımlanan, ilk iki değeri ‘0' ve diğer değerleri ‘1' olan

anahtar isimli sabit ile XOR işlemine tabi tutulması,

2) Bilginin ikinci yarı bölümündeki en büyük indisli terim harici bilgilerin (n-2 downto

n/2) terslenmesi,

3) Bilginin en büyük indisli (n-1 indisli) verisinin olduğu gibi aktarılması

gerekmektedir. Elde edilen bilgi cikis isimli çıkış portuna yazılacaktır. Gerekli VHDL

kodunu For-Generate ve If-Generate ifadeleri üzerinden yazınız.
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8.12 If-Generate Ataması

Girdi 8 bit iken;

1) Bilginin ilk yarı bölümünün
(n/2-1 downto 0), sabit bir
anahtar olan ve giriş bit sayısının
yarısına göre tanımlanan, ilk iki
değeri ‘0' ve diğer değerleri ‘1'
olan anahtar isimli sabit ile XOR
işlemine tabi tutulması,

2) Bilginin ikinci yarı
bölümündeki en büyük indisli
terim harici bilgilerin (n-2
downto n/2) terslenmesi,

3) Bilginin en büyük indisli (n-1
indisli) verisinin olduğu gibi
aktarılması

girdi 0 1 1 1 0 0 1 1

8 bitlik girdi için örnek aktarım

Adım-1

0 0 1 1

1 1 0 0

1 1 1 1

Adım-2

1 1 1

0 0 0

Adım-3

0

cikis 0 0 0 0 1 1 1 1

Anahtar
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Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity sifre1 is  
Generic (n: natural := 8); -- tasarım iç yapısı gereği n çift sayı olmalı
Port (girdi : in std_logic_vector (n-1 downto 0); 
          cikis : out std_logic_vector (n-1 downto 0)); 
End sifre1; 

8.12 If-Generate Ataması

Gerekli VHDL kodunu For-Generate

ve If-Generate ifadeleri üzerinden

yazınız.
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Architecture davranis of sifre1 is 
Constant anahtar: std_logic_vector (n/2-1 downto 0):= (0=>'0', 1=>'0', others =>'1'); 
Signal cikti_vek : std_logic_vector (n-1 downto 0); 
Begin 
 
sifrele: For i in 0 to n-1 generate 
 
    first_part: If (i < n/2) generate  -- n statik ve çift sayı olmalı 
         cikti_vek(i) <= anahtar(i) xor girdi(i); 
    End generate first_part; 
 
    second_part: If (i >= n/2 and i<n-1) generate  -- n statik ve çift sayı olmalı 
         cikti_vek(i) <= not girdi(i); 
    End generate second_part; 
 
    third_part: If (i = n-1) generate  -- n statik ve çift sayı olmalı 
         cikti_vek(i) <= girdi(i); 
    End generate third_part; 
 
End generate sifrele; 
 
cikis <= cikti_vek; 
 
End davranis; 

8.12 If-Generate Ataması
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8.12 If-Generate Ataması
Vivado / 

Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

0 0 1 1

1 1 0 0

1 1 1 1

1 1 1

0 0 0

0

cikis 0 0 0 0 1 1 1 1

Anahtar

sifrele: For i in 0 to n-1 generate 
 
    first_part: If (i < n/2) generate  -- n statik ve çift sayı olmalı 
         cikti_vek(i) <= anahtar(i) xor girdi(i); 
    End generate first_part; 
 
    second_part: If (i >= n/2 and i<n-1) generate  -- n statik ve çift sayı olmalı
         cikti_vek(i) <= not girdi(i); 
    End generate second_part; 
 
    third_part: If (i = n-1) generate  -- n statik ve çift sayı olmalı 
         cikti_vek(i) <= girdi(i); 
    End generate third_part; 
 
End generate sifrele; 
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9- ARDIŞIL DEVRE TASARIMI



Ders sorumlusu:

Doç. Dr. Hasan KOYUNCU

1



2

9. ARDIŞIL DEVRE TASARIMI

 Kombinasyonel devrelerde hafıza birimleri bulunmadığından elde edilen
çıkışlar süreklidir - kesintisizdir.

 Bu noktada elde edilen bir çıktının hafızada tutulması gerekiyorsa veya
başka bir devreye verinin aktarılması gerekli ise Ardışıl Devre Tasarımı
işletilmektedir.

VHDL dili kapsamında ardışıl devre tasarımı için farklı ifade ve yapılar
bulunmaktadır.

 Bunlar temel olarak process, function, procedure, case, loop, for ve while
şeklinde sıralanabilir.
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Ardışıl devre tasarımı senkron ve asenkron olarak iki tipte gerçekleştirilir.

 Tasarım içindeki bloklar aynı clock tetiği ile aktif hale geliyorsa
gerçeklenen tasarım senkron devre karakteristiğindedir.

9. ARDIŞIL DEVRE TASARIMI

Senkron devre örneği
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 Tasarım içindeki bloklar; başka bir blok işlemine bağlıysa veya farklı
sinyal tetiklemeleri ile aktif hale geliyorlarsa gerçeklenen tasarım
asenkron devre olarak bilinir.

9. ARDIŞIL DEVRE TASARIMI

Asenkron devre örneği

1

2

11

2 1-2
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 Hafıza biriminin bulunduğu ardışıl devre tasarımlarında saat darbesi (clock
sinyali) kare dalga şeklindedir ve bu sinyal ile iki tip tetikleme işletilir:

1-) Yükselen kenar tetiklemeli
2-) Düşen kenar tetiklemeli

Kare dalgada lojik-0’dan lojik-1’e geçiş yapıldığı kenar yükselen, lojik-1’
den lojik-0’ a geçiş yapıldığı kenar ise düşen kenar olarak bilinir.

Yükselen ve düşen kenar tetiklemeleri de belirtilen bu durumlara göre
meydana gelir.

 Sayısal tasarımda clock sinyalleri process yapılarını ve hafıza birimlerini
aktive etmek için kullanılır.

9. ARDIŞIL DEVRE TASARIMI
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 Sayısal elektronikte 1 bitlik veri sıklıkla D tipi FF içinde tutulur, çünkü
çalışma mantığı basittir ve D-FF’ler tasarım kolaylığı sağlarlar.

 Bu nedenle sayısal tasarımda hafıza gereksinimleri sıklıkla D-FF’ler
üzerinden sağlanır.

9. ARDIŞIL DEVRE TASARIMI
 Saat darbesinin durumlarına dair aşağıdaki örnek tanımlamalar ile VHDL
karşılık sağlanır.

9.1 D-Flip Flop ve Kaydediciler

// yükselen kenar tetiklemeli işlem 
 
If rising_edge(clk) then 
 
If clk'event and clk= '1' then 

// düşen kenar tetiklemeli işlem 
 
If falling_edge(clk) then  
 
If clk'event and clk= '0' then 
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 D-FF’lere dair doğruluk tablosu ve genel şema aşağıda görüldüğü gibidir.

Yukarıda görülen D-FF yapısına dair gerekli VHDL kodu yazalım.

 Bu noktada sistem çıkışı; clock tetiği ile sistem giriş durumuna, preset
girişi durumuna ve clear girişi durumuna göre elde edilmelidir.

9.1 D-Flip Flop ve Kaydediciler

D-FF genel şeması 

D-FF doğruluk tablosu

Q (t) D Q (t+1)
0 0 0 
0 1 1 
1 0 0 
1 1 1 



8

 Bu noktada sistem çıkışı;
clock tetiği ile sistem giriş
durumuna, preset girişi
durumuna ve clear girişi
durumuna göre elde
edilmelidir.

9.1 D-Flip Flop ve 
Kaydediciler

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity dtypeff is  
Port (clk, d_giris, birle, sifirla : in std_logic; 
          q, q_not : out std_logic); 
End dtypeff; 
 
Architecture davranis of dtypeff is 
Signal deg_tut: std_logic := '0'; 
Begin 
    Process (sifirla, birle, clk) 
    Begin 
       If sifirla = '1' then 
           deg_tut <= '0'; 
       Elsif birle = '1' then 
           deg_tut <= '1'; 
       Elsif clk'event and clk= '1' then 
           deg_tut <= d_giris; 
       End if; 
   End process; 
   q <= deg_tut; 
   q_not <= not deg_tut; 
End davranis; 
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 FPGA’deki temel D-FF yapıları genellikle
sadece 𝑸 üretir. 𝑸ഥ istenirse, sentez aracı çıkışa
otomatik olarak bir NOT kapısı ekler.

9.1 D-Flip Flop ve Kaydediciler

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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Ardışıl devre tasarımında sıralı ifadelerin işletilmesi genelde process
ifadesi ile sağlanır.

 Process ifadesi sonrası parantez içine bu bloğu tetikleyecek olan ifadeler
(duyarlılık listesi) yazılır.

 Örneğin; D-FF için clear, preset ve clock bu liste içine yazılabilir.

 Söz konusu liste içinde belirtilen sinyallerin değeri değiştiğinde (etkin
olduklarında) process bloğu tetiklenecektir.

 Etiket başlığı ise opsiyonel olarak kullanılabilir.

9.2 Process Yapısı
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Örnek 9.1: Akım (A), gerilim (V) ve sıcaklık (T) kontrolü yapılacak bir
elektronik kart için, belirtilen parametrelerin kontrol girişi olduğu bir sistem
tasarlanacaktır.

Sistem kapsamında kontrol birimi için herhangi bir değer sınırı aştığında
ikaz-1, iki değer sınırı aştığında ikaz-2, her üç değer sınırı aştığında ise
ikaz-3 çıkışı etkin olacak, gerekli üç çıkış clock tetiği ile senkron elde
edilecektir.

Gerekli çıkışları doğruluk tablosu üzerinden elde ederek gerekli VHDL
kodunu yazınız.

9.2 Process Yapısı

 Etiket başlığı ise opsiyonel
olarak kullanılabilir.

 

Etiket: Process (duyarlılık listesi) 
    variable [değişken tanımlama] 
Begin 
   Basit sinyal atamaları 
   If-else kullanımı 
   Döngü (while, for, loop) kullanımı 
   Case kullanımı 
End process; 

…
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Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity kontrol_birimi is  
Port (A,V,T,clk : in std_logic; 
          ikaz_1,ikaz_2,ikaz_3 : out std_logic); 
End kontrol_birimi; 
 
Architecture davranis of kontrol_birimi is 
Begin 
    Process (clk) 
    Begin 
        If rising_edge(clk) then 
            ikaz_1 <= ((not A) and (V xor T)) or (A and (not V) and (not T)); 
            ikaz_2 <= (T and (A xor V)) or (A and V and (not T)); 
            ikaz_3 <= (A and V and T); 
       End if; 
    End process; 
End davranis; 

9.2 Process Yapısı
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9.2 Process Yapısı
Vivado / 

Elaborated Design Çıktısı
(RTL Şematik Diyagramı)



14

9.3 If-Else Yapısı

Process yapısı içinde, belli koşul(lar)a göre tasarımı yönlendirmek için
kullanılan sıralı ifade komutlarından birisidir.

 Karşılaştırma yapısı olarak da atfedilir.

 If komutu ile en az bir şartın yazılması gerekir.

 İki durum olduğunda If-Else ifadesi (Else  genel gerçekleştirilmesi
gereken işlem için) veya If-Elsif ifadesi kullanılır.

 İkiden fazla şart olduğunda If-Elsif-Elsif komutu kullanılabilmekte, If-
Elsif-Else yapısı ise akışın sağlanmasında meydana gelebilecek hataların
önlenmesini sağlamak amacıyla (Else  genel gerçekleştirilmesi gereken
işlem için) işletilebilmektedir.
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9.3 If-Else Yapısı

If ve türevlerinin kullanım örnekleri

• If komutu ile en az bir şartın yazılması gerekir. İki durum olduğunda If-Else
ifadesi (Else  genel gerçekleştirilmesi gereken işlem için) veya If-Elsif ifadesi
kullanılır. İkiden fazla şart olduğunda If-Elsif-Elsif komutu kullanılabilmekte,
If-Elsif-Else yapısı ise akışın sağlanmasında meydana gelebilecek hataların
önlenmesini sağlamak amacıyla (Else  genel gerçekleştirilmesi gereken işlem
için) işletilebilmektedir.

If If-Else If-Elsif If-Elsif-Elsif If-Elsif-Else 

If koşul_1 then 
    İfade(ler)… 
End 

If koşul_1 then 
    İfade(ler)… 
Else 
    İfade(ler)… 
End 

If koşul_1 then 
    İfade(ler)… 
Elsif koşul_2 then 
    İfade(ler) 
End 

If koşul_1 then 
    İfade(ler)… 
Elsif koşul_2 then 
    İfade(ler) 
Elsif koşul_3 then 
    İfade(ler)… 
Elsif koşul_4 then 
    İfade(ler)… 
End 

If koşul_1 then 
    İfade(ler)… 
Elsif koşul_2 then 
    İfade(ler) 
Elsif koşul_3 then 
    İfade(ler)… 
Else 
    İfade(ler)… 
End 
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Örnek 9.2: Bir arabanın motor,
emniyet kemeri ve kapı durumları
sensörler üzerinden analiz edilerek ikaz
devreye alınacaktır. Sırasıyla motor,
emniyet ve kapi giriş portlarından
sensör bilgileri alınmaktadır.

Motor çalışıyor (lojik-1) ise emniyet
kemerinin takılmamış (lojik-0) veya
kapılardan birisi açık (lojik-0) olması
durumunda ikaz devreye girecektir.

Opsiyonel olarak sistemde arıza
gelebileceği düşünülerek resetleme
işlemi de tasarıma eklenecektir. Gerekli
VHDL kodunu yazınız.

9.3 If-Else Yapısı

ikaz <= motor and ((not (emniyet)) or
(not (kapi)));

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity kontrol_birimi is  
Port (motor, emniyet, kapi, clk, rst : in std_logic; 
          ikaz : out std_logic); 
End kontrol_birimi; 
 
Architecture davranis of kontrol_birimi is 
Begin 
    Process (clk, rst) 
    Begin 
        If (rst= '1') then 
            ikaz <= '0'; 
       Elsif rising_edge(clk) then 
            If (motor = '1') then 
                If (emniyet = '0' or kapi = '0') then 
                    ikaz <= '1'; 
                Else 
                   ikaz <= '0'; 
                End if; 
            Else 
                ikaz <= '0'; 
            End if; 
       End if; 
    End process; 
End davranis; 
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9.3 If-Else Yapısı

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

       If (rst= '1') then
            ikaz <= '0'; 
       Elsif rising_edge(clk) then 
            If (motor = '1') then 
                If (emniyet = '0' or kapi = '0') then 
                    ikaz <= '1'; 
                Else 
                   ikaz <= '0'; 
                End if; 
            Else 
                ikaz <= '0'; 
            End if; 
       End if; 
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9.4 Case Yapısı
 Case yapısı sıralı ifadelerden birisi olup, kontrol devrelerinde ve durum
makinelerinde sıklıkla kullanılır.

 If-Else ifadesinin yerine de kullanılan bu yapı, bir değişken veya sinyalin
alabileceği değerlere göre sağlanacak alternatif işlem seçiminde kullanılır.

 Case yazım şekli aşağıda görüldüğü gibidir.

 

Case degisken_veya_sinyal is 
    When deger_1 | deger_2 | deger_3 => -- birden fazla değer
        ifadeler  
    When deger_4 to deger_6 => -- değer aralığı 
        ifadeler  
    When deger_7 => -- tek bir değer 
        ifadeler  
    When Others => 
        ifadeler  
End Case; 
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9.4 Case Yapısı

Örnek 9.3: Şekilde
görülen 4:1 çoklayıcı
için gerekli VHDL
kodunu Case ifadesi
üzerinden yazınız.

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity colkayici_4e1 is  
Port (giris1, giris2, giris3, giris4 : in std_logic; 
          secim : in std_logic_vector (1 downto 0); 
          f : out std_logic); 
End colkayici_4e1; 
 
Architecture davranis of colkayici_4e1 is 
Begin 
    Process (secim, giris1, giris2, giris3, giris4) 
    Begin 
        Case secim is 
            When "00" => f <= giris1; 
            When "01" => f <= giris2; 
            When "10" => f <= giris3; 
            When "11" => f <= giris4; 
        End case; 
    End process; 
End davranis; 
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9.4 Case Yapısı Process (secim, giris1, giris2, giris3, giris4)
Begin 
    Case secim is 
        When "00" => f <= giris1; 
        When "01" => f <= giris2; 
        When "10" => f <= giris3; 
        When "11" => f <= giris4; 
    End case; 
End process; 

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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9.4 Case Yapısı

Örnek 9.4: Üretim bandında 4 farklı genişlikte kavanozun çapı fotoseller
vasıtasıyla ölçülecektir.

 Küçük kavanoz 1 fotoseli, orta kavanoz 2 fotoseli, büyük kavanoz 3
fotoseli ve ekstra büyük kavanoz 4 fotoseli kesecek şekilde sistem tasarımı
sağlanmıştır.

 Bantta kavanoz yokken fotosel bilgisi "0000" olarak gelmektedir ve bu
durumda çıkışa kavanoz yok bilgisi iletilmelidir.

 Diğer durumlar ise üretim hatası olarak çıkışa aktarılacaktır.

 Sistem çıkışında kavanoz çap büyüklükleri ve diğer durumlar ikili
tabanda ifade edilecek şekilde gerekli VHDL kodunu Case ifadesi
üzerinden yazınız.
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9.4 Case Yapısı

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity kav_kontrol is  
Port (clk, rst : in std_logic; 
          fotosel : in std_logic_vector (3 downto 0); 
          cikis : out std_logic_vector (2 downto 0)); 
End kav_kontrol; 

Durum / Giriş İkili Karşılık 
Kavanoz yok 000 

Küçük kavanoz 001 
Orta kavanoz 010 

Büyük kavanoz 011 
Extra büyük kavanoz 100 

Üretim Hatası 101 

Şeklinde ifade edelim.
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9.4 Case 
Yapısı

Architecture davranis of kav_kontrol is 
Begin 
    Process (clk, rst) 
    Begin 
        If (rst= '1') then 
            cikis <= "000"; 
        Elsif rising_edge (clk) then 
            Case fotosel is 
                When x"0" => 
                    cikis <= "000";    -- kavanoz yok 
                When x"1" | x"2" | x"4" | x"8" => 
                    cikis <= "001";    -- küçük kavanoz 
                When x"3" | x"6" | x"C" => 
                    cikis <= "010";     -- orta kavanoz 
                When x"7" | x"E" => 
                    cikis <= "011";     -- büyük kavanoz 
                When x"F" => 
                    cikis <= "100";     -- extra büyük kavanoz 
                When others =>   
                    cikis <= "101";       -- üretim hatası 
          End case; 
        End if; 
   End process; 
End davranis; 

Durum / Giriş İkili Karşılık 
Kavanoz yok 000 

Küçük kavanoz 001 
Orta kavanoz 010

Büyük kavanoz 011 
Extra büyük kavanoz 100 

Üretim Hatası 101 



24

9.4 Case Yapısı
Durum / Giriş İkili Karşılık 
Kavanoz yok 000 

Küçük kavanoz 001 
Orta kavanoz 010 

Büyük kavanoz 011 
Extra büyük kavanoz 100 

Üretim Hatası 101 

   Case fotosel is
       When x"0" => 
           cikis <= "000";    -- kavanoz yok 
       When x"1" | x"2" | x"4" | x"8" => 
           cikis <= "001";    -- küçük kavanoz 
       When x"3" | x"6" | x"C" => 
           cikis <= "010";     -- orta kavanoz 
       When x"7" | x"E" => 
           cikis <= "011";     -- büyük kavanoz 
       When x"F" => 
           cikis <= "100";     -- extra büyük kavanoz 
       When others =>   
           cikis <= "101";       -- üretim hatası 
 End case;

 Derleyici, 4 bitlik fotoset girdisini
ve buna göre gerekli 6 farklı çıktı
üretimini ROM yapısı temelli
modelledi.

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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9.5 For Yapısı

 İç bölümünde tanımlı kodları belirli bir sayıda (iterasyon sayısınca) çalıştırır.

 İçinde bildirilen parametre için; tanımlı aralığın başlangıç değerini
parametreye aktaran, bu değeri her döngüde 1 artıran ve bitiş değerinde
döngüyü sonlandıran yapıdır.

Aralıkta belirtilen başlangıç ve bitiş değerleri farkına +1 eklendiğinde
iterasyon sayısı tespit edilir.

 Tanımlamada etiket başlığı opsiyonel olarak kullanılabilir.

 

Etiket: For parametre in baslangic_deger to bitis_deger loop  
   İfade(ler)… 
End loop; 
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9.5 For Yapısı

Örnek 9.5: 32 bitlik bir sayıda kaç adet lojik-1 olduğunu tespit etmek için
gerekli VHDL kodunu For ifadesi üzerinden yazınız.

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.std_logic_arith.all; 
Use ieee.std_logic_unsigned.all; 
 
Entity birleri_say is  
Generic (n: natural := 32); 
Port (clk, rst : in std_logic; 
              girdi : in std_logic_vector (n-1 downto 0); 
              cikti : out std_logic_vector (5 downto 0)); -- en fazla 32 olabilir  
End birleri_say; 

Tasarım-1
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9.5 For Yapısı

Architecture davranis of birleri_say is 
Begin 
    Process (clk, rst) 
        variable sayma: integer range 0 to n; 
    Begin 
        If (rst= '1') then 
            sayma := 0; 
            cikti <= (others=>'0'); 
        Elsif rising_edge (clk) then 
            sayma := 0; 
            For i in 0 to n-1 loop 
                If girdi(i) = '1' then 
                    sayma := sayma + 1; 
                End if; 
            End loop; 
            cikti <= conv_std_logic_vector (sayma, cikti'length); 
        End if; 
    End process; 
End davranis; 

Tasarım-1
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9.5 For Yapısı

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Tasarım-1
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9.5 For Yapısı

Örnek 9.5: 32 bitlik bir sayıda kaç adet lojik-1 olduğunu tespit etmek için
gerekli VHDL kodunu For ifadesi üzerinden yazınız.

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity birleri_say is  
Generic (n: natural := 32); 
Port (clk, rst : in std_logic; 
              girdi : in std_logic_vector (n-1 downto 0); 
              cikti : out std_logic_vector (5 downto 0)); -- en fazla 32 olabilir  
End birleri_say; 

Tasarım-2
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9.5 For Yapısı Tasarım-2

Architecture davranis of birleri_say is 
Begin 
    Process (clk, rst) 
        variable sayma: integer range 0 to n; 
    Begin 
        If (rst= '1') then 
            sayma := 0; 
            cikti <= (others=>'0'); 
        Elsif rising_edge (clk) then 
            sayma := 0; 
            For i in 0 to n-1 loop 
                If girdi(i) = '1' then 
                    sayma := sayma + 1; 
                End if; 
            End loop; 
            cikti <= std_logic_vector (to_unsigned(sayma, cikti'length)); 
        End if; 
    End process; 
End davranis; 
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9.5 For Yapısı

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Tasarım-2
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9.6 While Yapısı

 Şartlı döngü yapısındadır.

While komutu önünde yazılı durumlar sağlandığı müddetçe döngü devam
eder ve blok içi işlemler iteratif sağlanır.

 Şart sağlanmadığı durumda döngü sonlandırılır.

Örnek 9.5: 32 bitlik bir sayıda kaç adet lojik-1 olduğunu tespit etmek için gerekli
VHDL kodunu While ifadesi üzerinden yazınız.

 

While şart loop  
   İfade(ler)… 
End loop; 
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9.6 While Yapısı

Örnek 9.5: 32 bitlik bir sayıda
kaç adet lojik-1 olduğunu
tespit etmek için gerekli
VHDL kodunu While ifadesi
üzerinden yazınız.

for döngüsü (Tasarım-2) 
örneğinin while ile 

gerçeklenmesi

Tasarım-1 ve Tasarım-2’deki 
aynı RTL Şematik Diyagramı

elde edilir.

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity birleri_say is  
Generic (n: natural := 32); 
Port (clk, rst : in std_logic; 
              girdi : in std_logic_vector (n-1 downto 0); 
              cikti : out std_logic_vector (5 downto 0)); -- en fazla 32 olabilir  
End birleri_say; 
 
Architecture davranis of birleri_say is 
Begin 
    Process (clk, rst) 
        variable sayma, i: integer range 0 to n; 
    Begin 
        If (rst= '1') then 
            sayma := 0;  
            i := 0; 
            cikti <= (others=>'0'); 
        Elsif rising_edge (clk) then 
            sayma := 0; 
            i := 0; 
            While (i<n) loop 
                If girdi(i) = '1' then 
                    sayma := sayma + 1; 
                End if; 
                i := i + 1; 
            End loop; 
            cikti <= std_logic_vector (to_unsigned(sayma, cikti'length)); 
        End if; 
    End process; 
End davranis; 
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9.6 While Yapısı

Örnek 9.6: 8 bitlik girdide eşlik bitini (girdideki ‘1’ lerin sayısı çift ise 0,
tek ise 1 değerini alan bit) sağlayan VHDL kodunu While ifadesi üzerinden
yazınız.

Tasarım-1 
(Eşlik Biti)

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity eslik_biti is  
Generic (n: natural := 8); 
Port (clk, rst : in std_logic; 
          girdi : in std_logic_vector (n-1 downto 0);
          es_cikis : out std_logic); 
End eslik_biti; 
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9.6 While Yapısı

Architecture davranis of eslik_biti is 
Begin 
    Process (clk, rst) 
        variable deg_tut: std_logic; 
        variable i: integer range 0 to n; 
    Begin 
        If (rst= '1') then 
            deg_tut := '0'; 
            i := 0; 
            es_cikis <= '0';   
        Elsif rising_edge (clk) then 
            deg_tut := '0'; 
            i := 0; 
            While (i < n) loop 
                deg_tut := deg_tut xor girdi(i);  
                i := i + 1; 
            End loop; 
            es_cikis <= deg_tut;  
        End if; 
    End process; 
End davranis; 

Tasarım-1 
(Eşlik Biti)
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9.6 While Yapısı Architecture davranis of eslik_biti is 
Begin 
    Process (clk, rst) 
        variable deg_tut: std_logic; 
        variable i: integer range 0 to n; 
    Begin 
        If (rst= '1') then 
            deg_tut := '0'; 
            i := 0; 
            es_cikis <= '0';   
        Elsif rising_edge (clk) then 
            deg_tut := '0'; 
            i := 0; 
            While (i < n) loop 
                deg_tut := deg_tut xor girdi(i);  
                i := i + 1; 
            End loop; 
            es_cikis <= deg_tut;  
        End if; 
    End process; 
End davranis; 

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Örnek 9.6: 8 bitlik girdide
eşlik bitini (girdideki ‘1’
lerin sayısı çift ise 0, tek ise
1 değerini alan bit) sağlayan
VHDL kodunu While ifadesi
üzerinden yazınız.

Tasarım-1 
(Eşlik Biti)
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9.7 Loop Yapısı

 Diğer döngü yapılarında döngü sonlandırma için kaç kez tekrar edileceği
bilgisi sunulur.

Ancak Loop döngüsünde sonlandırma için yalnızca gerekli koşul (Exit
ifadesinden sonra) bildirilir.

 Kontrollü loop döngüsünün tanımı aşağıdaki gibidir:

 

Etiket: loop  
   İfade(ler)… 
   Exit Etiket When Kosul 
End loop Etiket; 
 

;
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9.7 Loop Yapısı

Örnek 9.5: 32 bitlik bir sayıda
kaç adet lojik-1 olduğunu tespit
etmek için gerekli VHDL
kodunu Loop ifadesi üzerinden
yazınız.

for döngüsü (Tasarım-2) 
örneğinin loop ile 

gerçeklenmesi

Tasarım-1 ve Tasarım-2’deki 
aynı RTL Şematik Diyagramı

elde edilir.

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity birleri_say is  
Generic (n: natural := 32); 
Port (clk, rst : in std_logic; 
              girdi : in std_logic_vector (n-1 downto 0); 
              cikti : out std_logic_vector (5 downto 0)); -- en fazla 32 olabilir  
End birleri_say; 
 
Architecture davranis of birleri_say is 
Begin 
    Process (clk, rst) 
        variable sayma, i: integer range 0 to n; 
    Begin 
        If (rst= '1') then 
            sayma := 0;  
            i := 0; 
            cikti <= (others=>'0'); 
        Elsif rising_edge (clk) then 
            sayma := 0; 
            i := 0; 
            dongu: loop 
                If girdi(i) = '1' then 
                    sayma := sayma + 1; 
                End if; 
                i := i + 1; 
                Exit dongu When i = n; -- veya Exit dongu When i > n-1; 
            End loop dongu;  
            cikti <= std_logic_vector (to_unsigned(sayma, cikti'length)); 
        End if; 
    End process; 
End davranis; 
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9.7 Loop Yapısı

Örnek 9.7: Örnek 9.6’ daki eşlik biti devre tasarımı için gerekli VHDL
kodununun architecture bölümünü Loop ifadesi üzerinden yazınız.

Tasarım-2 
(Eşlik Biti)

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity eslik_biti is  
Generic (n: natural := 8); 
Port (clk, rst : in std_logic; 
          girdi : in std_logic_vector (n-1 downto 0); 
          es_cikis : out std_logic); 
End eslik_biti; 
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9.7 Loop Yapısı

Architecture davranis of eslik_biti is 
Begin 
    Process (clk, rst) 
        variable deg_tut: std_logic; 
        variable i: integer range 0 to n; 
    Begin 
        If (rst='1') then 
            deg_tut := '0'; 
            i := 0; 
            es_cikis <= '0'; 
        Elsif rising_edge (clk) then 
            deg_tut := '0'; 
            i := 0; 
            dongu: loop 
                deg_tut := deg_tut xor girdi(i);  
                i := i + 1; 
                Exit dongu When i = n; -- veya Exit dongu When i > n-1; 
            End loop dongu; 
            es_cikis <= deg_tut; 
        End if;  
    End process; 
End davranis; 

Tasarım-2 
(Eşlik Biti)
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9.7 Loop Yapısı

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Örnek 9.6: 8 bitlik girdide
eşlik bitini (girdideki ‘1’
lerin sayısı çift ise 0, tek ise
1 değerini alan bit) sağlayan
VHDL kodunu Loop ifadesi
üzerinden yazınız.

Architecture davranis of eslik_biti is 
Begin 
    Process (clk, rst) 
        variable deg_tut: std_logic; 
        variable i: integer range 0 to n; 
    Begin 
        If (rst='1') then 
            deg_tut := '0'; 
            i := 0; 
            es_cikis <= '0'; 
        Elsif rising_edge (clk) then 
            deg_tut := '0'; 
            i := 0; 
            dongu: loop 
                deg_tut := deg_tut xor girdi(i);  
                i := i + 1; 
                Exit dongu When i = n; -- veya Exit dongu When i > n-1; 
            End loop dongu; 
            es_cikis <= deg_tut; 
        End if;  
    End process; 
End davranis; 

Tasarım-2 
(Eşlik Biti)

Tasarım-1 (Eşlik Biti) ve Tasarım-2 (Eşlik Biti) RTL şematik diyagramları aynıdır.
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9.8 Alt Programlar

 Alt programlar, ana program içerisinde belirli görevleri yerine getirmek
için tasarlanmış algoritmaları içeren VHDL yapılarıdır.

 Komplike tasarımlarda önemli kolaylık sağlayan iki farklı alt program
bulunur: Fonksiyonlar ve Prosedürler.

 Fonksiyonlar çoklu girişe (parametrelere) göre belirli bir tipte tekil değer
döndüren yapılardır.

 Prosedürler ise çoklu girişe göre çoklu çıkış üretmeyi sağlarlar, değer
döndürmezler.
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9.8.1 Fonksiyonlar

 Belirli bir tipte tekil değer döndüren alt programdır.

 İçinde değişken ve sabit tanımlanabilmesine rağmen, sinyal tanımlaması
gerçekleştirilmez.

 RAM ve ROM gibi birimlerde, benzer işlemlerin defalarca yapılmasında
işlevsellik sağlar (adres çözümleme, veri dönüştürme, vb gibi).

 Fonksiyonlar bir değer döndürdüğünden, prosedürlerden farklı olarak
return komutu içerir.

 

Function fonksiyon_ismi (giris_1, giris_2, …, giris_n : tür) return tür is 
   Sabit_veya_degisken_tanımlamalari 
Begin  
   İfade(ler)… 
End fonksiyon_ismi; 
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9.8.1 Fonksiyonlar

 Fonksiyon tanımlaması, architecture içinde kullanılması halinde begin
kelimesinden önce yapılmalıdır.

 Girişindeki parametreler sinyal olabilmektedir, ancak işlem yapılacağı
zaman önceden de belirtildiği gibi değişken veya sabitler üzerinden
görevler sağlanmalıdır.

 Fonksiyon isimlendirmesi yapılırken genelde “f” harfi sonrası farklı
ifadelerin yazılması tercih edilir.

Örnek 9.8: Komplike bir tasarım içinde ሺ𝐴 ൅ 𝐵ሻ𝐶 lojik ifadesinin sürekli
işletilmesi gerekiyor. Buna göre A,B ve C’ye karşılık giris1, giris2 ve giris3
sinyalleri sistem girişi olacağı durumda gerekli VHDL kodunu yazınız.
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9.8.1 Fonksiyonlar

Örnek 9.8: Komplike bir
tasarım içinde ሺ𝐴 ൅ 𝐵ሻ𝐶
lojik ifadesinin sürekli
işletilmesi gerekiyor. Buna
göre A,B ve C’ye karşılık
giris1, giris2 ve giris3
sinyalleri sistem girişi
olacağı durumda gerekli
VHDL kodunu yazınız.

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity lojik_islem is  
Port (giris1, giris2, giris3 : in std_logic; 
          cikti : out std_logic); 
End lojik_islem; 
 
Architecture davranis of lojik_islem is 
    Function f3islem (A, B, C : std_logic) 
        return std_logic is 
    variable ara_deg: std_logic; 
    Begin 
        ara_deg := ((not A) or B) and C; 
        return ara_deg; 
    End f3islem; 
Begin 
    cikti <= f3islem(giris1, giris2, giris3); 
End davranis; 
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9.8.2 Prosedürler

 Herhangi bir değer döndürmeyen, yapısında tanımlı girişlere göre devreyi
işleterek sonucu yine yapısında tanımlı çıkış değer(ler)ine aktaran alt
programdır.

 Prosedürün tanımlama yeri, fonksiyon tanımlamalarında da olduğu gibi
architecture ifadesinden sonra begin komutundan önce olmalıdır.

 Prosedür isimlendirmesi yapılırken genelde “p” harfi sonrası farklı
ifadelerin yazılması tercih edilir.

 Fonksiyondan farklı olarak girdi sinyalleri üzerinde direk işlem
yapabilir, ama içinde sinyal tanımlaması yapılamaz (prosedür ve
process’lerde de aynı kural geçerlidir).
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9.8.2 Prosedürler

 Procedure ifadesi sonrası, parantez içerisinde girdiler ve gerekli çıktı(lar)
belirtilir.

 Burada fonksiyonlarda olduğu gibi sıralamanın dikkatli şekilde yapılması
gerekir.

 

Procedure prosedur_ismi (nesne_tipi girişler: in tür; 
                                            nesne_tipi cikislar: out tür) is 
   Sabit_veya_degisken_tanımlamalari 
Begin  
   İfade(ler)… 
End prosedur_ismi; 
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9.8.2 Prosedürler

Örnek 9.9: Örnek 9.8’ de 
lojik ifadeyi prosedür
içinde tanımlayarak 
gerekli VHDL kodunu 
yazınız. 

Komplike bir tasarım 
içinde ሺ𝐴 ൅ 𝐵ሻ𝐶 lojik 
ifadesinin sürekli 
işletilmesi gerekiyor. 
Buna göre A,B ve C’ ye 
karşılık giris1, giris2 ve 
giris3 sinyalleri sistem 
girişi olacağı durumda 
gerekli VHDL kodunu 
yazınız. 

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity lojik_islem is  
Port (giris1, giris2, giris3 : in std_logic; 
          cikti : out std_logic); 
End lojik_islem; 
 
Architecture davranis of lojik_islem is 
    Procedure p3islem (signal A, B, C : in std_logic; 
                                     signal elde : out std_logic) is 
    Begin 
        elde <= ((not A) or B) and C; 
    End p3islem; 
Begin 
    p3islem(giris1, giris2, giris3, cikti); 
End davranis; 
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10. ÖRNEK UYGULAMALAR

Örnek 10.1: 8’li LED devresinde sol ve sağ butonlarının durumuna göre sağa
ve sola kaydırma işlemi sağlayan VHDL kodunu yazınız. (Not: En sağdaki
led ile başlangıç yapalım)

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity led_uyg is  
Port (clk, rst, sol, sag : in std_logic; 
         cikti : out std_logic_vector (7 downto 0)); 
End led_uyg; 
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Örnek 10.1: 8’li LED devresinde sol
ve sağ butonlarının durumuna göre
sağa ve sola kaydırma işlemi
sağlayan VHDL kodunu yazınız.

(Not: En sağdaki led ile başlangıç
yapalım)

10. ÖRNEK 
UYGULAMALAR

Architecture davranis of led_uyg is
    signal dizi : std_logic_vector (7 downto 0) := x"01"; 
    signal sayma : integer range 0 to 7 := 0;  
Begin 
    Process (clk, rst) 
    Begin 
        If rst = '1' then 
            sayma <= 0; 
            dizi <= (others => '0'); 
            dizi(0) <= '1'; 
            cikti <= dizi; 
        Elsif rising_edge(clk) then 
            If sol = '1' and sag='0' then 
                If sayma = 7 then 
                    sayma <= 0; 
                Else 
                    sayma <= sayma + 1; 
                End if; 
                dizi <= (others => '0'); 
                dizi(sayma) <= '1'; 
                cikti <= dizi; 
            Elsif sol='0' and sag = '1' then 
                If sayma = 0 then 
                    sayma <= 7; 
                Else 
                    sayma <= sayma - 1; 
                End if; 
                dizi <= (others => '0'); 
                dizi(sayma) <= '1'; 
                cikti <= dizi; 
            End if; 
        End if; 
    End process; 
End davranis; 

-- Aralık belirtmek, 
derleyicinin integer işlemler 
için doğrudan 32 bitlik işlem 

yapmasını (gereksiz devre 
yoğunluğunu) engeller.



4

10. ÖRNEK UYGULAMALAR
Örnek 10.1: 8’li LED devresinde 
sol ve sağ butonlarının durumuna 
göre sağa ve sola kaydırma işlemi 
sağlayan VHDL kodunu yazınız.

(Not: En sağdaki led ile başlangıç 
yapalım)

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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10. ÖRNEK 
UYGULAMALAR

Architecture davranis of led_uyg is
    signal dizi : std_logic_vector (7 downto 0) := x"01"; 
    signal sayma : integer range 0 to 7 := 0;  
Begin 
    Process (clk, rst) 
    Begin 
        If rst = '1' then 
            sayma <= 0; 
            dizi <= (others => '0'); 
            dizi(0) <= '1'; 
            cikti <= dizi; 
        Elsif rising_edge(clk) then 
            If sol = '1' and sag='0' then 
                If sayma = 7 then 
                    sayma <= 0; 
                Else 
                    sayma <= sayma + 1; 
                End if; 
                dizi <= (others => '0'); 
                dizi(sayma) <= '1'; 
                cikti <= dizi; 
            Elsif sol='0' and sag = '1' then 
                If sayma = 0 then 
                    sayma <= 7; 
                Else 
                    sayma <= sayma - 1; 
                End if; 
                dizi <= (others => '0'); 
                dizi(sayma) <= '1'; 
                cikti <= dizi; 
            End if; 
        End if; 
    End process; 
End davranis; 

-- Aralık belirtmek, 
derleyicinin integer işlemler 
için doğrudan 32 bitlik işlem 

yapmasını (gereksiz devre 
yoğunluğunu) engeller.

Ek Önemli Bilgi:
Gri arkaplanlı bölüm yalnızca 
belirtilen yere yazılırsa, 

- sol='0‘ and sag='0‘  ile
- sol=‘1‘ and sag=‘1‘ 

durumlarında da çalışmaya 
devam eder ve gereksiz güç 
kaybına (gereksiz yüklemeye) 
sebebiyet verebilir.
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Örnek 10.2: 4 bitlik giriş portu ile 0-F arası sayıları aygıt üzerindeki ilk 7-
segmentte görüntüleyen kodlamayı yapınız.

10. ÖRNEK UYGULAMALAR

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity seven_seg is 
Port (clk, rst : in std_logic; 
          girdi : in std_logic_vector (3 downto 0); 
          secim : out std_logic_vector (7 downto 0);
          cikti : out std_logic_vector (7 downto 0)); 
End seven_seg; 

Tasarım-1
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10. ÖRNEK UYGULAMALAR
Architecture davranis of seven_seg is 
    signal lcd_bcd : std_logic_vector (3 downto 0) := (others => '0');
    signal lcd_out : std_logic_vector (7 downto 0) := "10000001"; 
Begin 
    Process (lcd_bcd) 
    Begin 
        Case lcd_bcd is -- sayı pabcdefg şeklinde yazılır 
            when "0000" => lcd_out <= "10000001"; -- “0” 
            when "0001" => lcd_out <= "11001111"; -- “1” 
            when "0010" => lcd_out <= "10010010"; -- “2” 
            when "0011" => lcd_out <= "10000110"; -- “3” 
            when "0100" => lcd_out <= "11001100"; -- “4” 
            when "0101" => lcd_out <= "10100100"; -- “5” 
            when "0110" => lcd_out <= "10100000"; -- “6” 
            when "0111" => lcd_out <= "10001111"; -- “7” 
            when "1000" => lcd_out <= "10000000"; -- “8” 
            when "1001" => lcd_out <= "10000100"; -- “9” 
            when "1010" => lcd_out <= "10000010"; -- “a” 
            when "1011" => lcd_out <= "11100000"; -- “b” 
            when "1100" => lcd_out <= "10110001"; -- “C” 
            when "1101" => lcd_out <= "11000010"; -- “d” 
            when "1110" => lcd_out <= "10110000"; -- “E” 
            when "1111" => lcd_out <= "10111000"; -- “F” 
            when others => lcd_out <= "10000001"; -- “0” 
        End case; 
    End process; 

Tasarım-1
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10. ÖRNEK UYGULAMALAR

    Process (clk, rst) 
    Begin 
        If rst = '1' then 
            secim <= "11111110"; -- 7-segment display’lerden en sağdaki aktif 
            lcd_bcd <= (others=>'0'); 
            cikti <= x"81"; 
        Elsif rising_edge(clk) then 
            secim <= "11111110"; -- 7-segment display’lerden en sağdaki aktif 
            lcd_bcd <= girdi; 
            cikti <= lcd_out; 
        End if; 
   End process; 
End davranis; 

Tasarım-1
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10. ÖRNEK UYGULAMALAR
Örnek 10.2: 4 bitlik giriş portu ile 0-F arası sayıları
aygıt üzerindeki ilk 7-segmentte görüntüleyen
kodlamayı yapınız.

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Tasarım-1
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Örnek 10.2: 4 bitlik giriş portu ile 0-F arası sayıları aygıt üzerindeki ilk 7-
segmentte görüntüleyen kodlamayı yapınız.

10. ÖRNEK UYGULAMALAR

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity seven_seg is 
Port (clk, rst : in std_logic; 
          girdi : in std_logic_vector (3 downto 0); 
          secim : out std_logic_vector (7 downto 0); 
          cikti : out std_logic_vector (7 downto 0)); 
End seven_seg; 
 

Tasarım-2
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10. ÖRNEK UYGULAMALAR
Architecture davranis of seven_seg is 
    signal lcd_out : std_logic_vector (7 downto 0) := "10000001";
Begin 
    secim <= "11111110"; 
    With girdi select 
    lcd_out <= "10000001" when "0000", -- “0” 
                      "11001111" when "0001", -- “1” 
                      "10010010" when "0010", -- “2” 
                      "10000110" when "0011", -- “3” 
                      "11001100" when "0100", -- “4” 
                      "10100100" when "0101", -- “5” 
                      "10100000" when "0110", -- “6” 
                      "10001111" when "0111", -- “7” 
                      "10000000" when "1000", -- “8” 
                      "10000100" when "1001", -- “9” 
                      "10000010" when "1010", -- “a” 
                      "11100000" when "1011", -- “b” 
                      "10110001" when "1100", -- “C” 
                      "11000010" when "1101", -- “d” 
                      "10110000" when "1110", -- “E” 
                      "10111000" when "1111", -- “F” 
                      "10000001" when Others; -- “0” 

Tasarım-2



12

10. ÖRNEK UYGULAMALAR

    Process (clk, rst) 
    Begin 
        If rst = '1' then 
            cikti <= x"81"; 
        Elsif rising_edge(clk) then 
            cikti <= lcd_out; 
        End if; 
   End process; 
End davranis; 

Tasarım-2
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10. ÖRNEK UYGULAMALAR

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Örnek 10.2: 4 bitlik giriş portu ile 0-F arası sayıları
aygıt üzerindeki ilk 7-segmentte görüntüleyen
kodlamayı yapınız.

Tasarım-2
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Örnek 10.3: 4 bitlik bilgiyi şifreyelerek karşıya ileten bir kodlama devresi
tasarlanacaktır. Tasarımda;

1) 4 bitlik temel bilgi alınarak 1’ e tümlenecek ve elde edilen bilgi temel bilgi
soluna eklenecek,

2) 8 bitlik veri sağa 1 bit döndürülecek (ror komutu olmadan),

3) Adım-2’ de elde edilen bilgi 11000011 anahtarı ile XOR işlemine tabi
tutulacak.

Gerekli VHDL kodunu yazınız.

10. ÖRNEK UYGULAMALAR

Ek Bilgi:

- Hem şifrelemede hem de çözümlemede
aynı anahtar varsa simetrik şifreleme,

- Her iki durum için farklı anahtar
kullanılacaksa asimetrik şifreleme söz
konusudur.

Geleneksel Diğer Şifreleme Türleri (bkz.):

- Blok Şifreleme
- Seri Şifreleme
- RC5 Şifreleme vb gibi.
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10. ÖRNEK UYGULAMALAR
Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity sifreleme is  
Port (clk : in std_logic; 
          girdi : in std_logic_vector (3 downto 0); 
          cikti : out std_logic_vector (7 downto 0)); 
End sifreleme; 
 
Architecture davranis of sifreleme is 
Begin 
    Process (clk) 
        variable deger: std_logic_vector (7 downto 0); 
        constant anahtar: std_logic_vector (7 downto 0) := "11000011"; 
    Begin 
        If rising_edge (clk) then 
            deger := not girdi & girdi; 
            deger := deger(0) & deger(7 downto 1); 
            cikti <= deger xor anahtar; 
        End if; 
    End process; 
End davranis; 

Tasarım-1



16

10. ÖRNEK UYGULAMALAR

Architecture davranis of sifreleme is 
Begin 
    Process (clk) 
        variable deger: std_logic_vector (7 downto 0); 
        constant anahtar: std_logic_vector (7 downto 0) := "11000011"; 
    Begin 
        If rising_edge (clk) then 
            deger := not girdi & girdi; 
            deger := deger(0) & deger(7 downto 1); 
            cikti <= deger xor anahtar; 
        End if; 
    End process; 
End davranis; 

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Tasarım-1
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Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity sifreleme is  
Port (clk : in std_logic; 
          girdi : in std_logic_vector (3 downto 0); 
          cikti : out std_logic_vector (7 downto 0)); 
End sifreleme; 
 
Architecture davranis of sifreleme is 
Begin 
    Process (clk) 
        variable deger: unsigned (7 downto 0); 
        constant anahtar: unsigned (7 downto 0) := "11000011"; 
    Begin 
        If rising_edge (clk) then 
            deger := unsigned(not girdi & girdi); 
            deger := deger ror 1; 
            cikti <= std_logic_vector(deger xor anahtar); 
        End if; 
    End process; 
End davranis; 

10. ÖRNEK UYGULAMALAR
Tasarım-2

ror komutu 
kullansaydık 

nasıl yazardık?

Tasarım-1’deki aynı 
RTL Şematik Diyagramı

elde edilir.
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Örnek 10.4: 4 bitlik bilgi üzerinden saat (clk) sinyali temelli frekans bölücü
devre tasarımı gerçekleştirilecektir. Buna göre;

 rst giriş portu aktif olduğunda frekans bölücü devre çıkışlarına lojik-0 bilgisi
aktarılacaktır. (4 bitlik olduğu için çıkışlar /2, /4, /8, /16 işlemlerini yapar)

 clk giriş portunun yükselen kenarında sayma değeri bir artırılarak, 4 bitlik
sayıcı değişimi gerçekleştirilecektir. Bu dört bitlik bilginin herbir hanesi /2, /4, /8,
/16 işlemlerine karşılık ilgili çıkış portlarına aktarılacaktır.

 Sayma işlemine bağımlı analiz ve devre tasarımı yapıldığından, sayıcı 4 bitlik
maksimum durum sonrası sıfırlanmalıdır.

Gerekli VHDL kodunu yazınız.

10. ÖRNEK UYGULAMALAR
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10. ÖRNEK 
UYGULAMALAR

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all;   
 
Entity freq_div is  
Port (clk, rst : in std_logic; 
          sigclk_2, sigclk_4, sigclk_8, sigclk_16 : out std_logic); 
End freq_div; 
 
Architecture davranis of freq_div is 
Signal sayac_vek : std_logic_vector(3 downto 0) := (others => '0'); 
Begin 
 
sigclk_2 <= sayac_vek (0); -- f/2 
sigclk_4 <= sayac_vek (1); -- f/4 
sigclk_8 <= sayac_vek (2); -- f/8 
sigclk_16 <= sayac_vek (3); -- f/16 
 
  Process(clk, rst) 
  Begin 
       If rst='1' then 
             sayac_vek <= (others => '0'); 
       Elsif rising_edge(clk) then 
             sayac_vek <= std_logic_vector(unsigned(sayac_vek) + 1); 
       End if; 
  End process; 
End davranis; 

Tasarım-1
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10. ÖRNEK 
UYGULAMALAR

Architecture davranis of freq_div is
Signal sayac_vek : std_logic_vector(3 downto 0) := (others => '0'); 
Begin 
 
sigclk_2 <= sayac_vek (0); -- f/2 
sigclk_4 <= sayac_vek (1); -- f/4 
sigclk_8 <= sayac_vek (2); -- f/8 
sigclk_16 <= sayac_vek (3); -- f/16 
 
  Process(clk, rst) 
  Begin 
       If rst='1' then 
             sayac_vek <= (others => '0'); 
       Elsif rising_edge(clk) then 
             sayac_vek <= std_logic_vector(unsigned(sayac_vek) + 1); 
       End if; 
  End process; 
End davranis; 

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Tasarım-1
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Vivado / 
Simulation Çıktısı

Architecture davranis of freq_div is
Signal sayac_vek : std_logic_vector(3 downto 0) := (others => '0'); 
Begin 
 
sigclk_2 <= sayac_vek (0); -- f/2 
sigclk_4 <= sayac_vek (1); -- f/4 
sigclk_8 <= sayac_vek (2); -- f/8 
sigclk_16 <= sayac_vek (3); -- f/16 
 
  Process(clk, rst) 
  Begin 
       If rst='1' then 
             sayac_vek <= (others => '0'); 
       Elsif rising_edge(clk) then 
             sayac_vek <= std_logic_vector(unsigned(sayac_vek) + 1); 
       End if; 
  End process; 
End davranis; 

Tasarım-1

10. ÖRNEK UYGULAMALAR
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Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all;   
 
Entity freq_div is  
Port (clk, rst : in std_logic; 
          sigclk_2, sigclk_4, sigclk_8, sigclk_16 : out std_logic); 
End freq_div; 
 
Architecture davranis of freq_div is 
Signal sayac_vek : std_logic_vector(3 downto 0) := (others => '0'); 
Begin 
  Process(clk, rst) 
  Begin 
       If rst='1' then 
             sayac_vek <= (others => '0'); 
             sigclk_2 <= '0';  
             sigclk_4 <= '0';  
             sigclk_8 <= '0';  
             sigclk_16 <= '0'; 
       Elsif rising_edge(clk) then 
             sayac_vek <= std_logic_vector(unsigned(sayac_vek) + 1); 
             sigclk_2 <= sayac_vek (0); -- f/2 
             sigclk_4 <= sayac_vek (1); -- f/4 
             sigclk_8 <= sayac_vek (2); -- f/8 
             sigclk_16 <= sayac_vek (3); -- f/16 
       End if; 
  End process; 
End davranis; 

10. ÖRNEK 
UYGULAMALAR

Tasarım-2

Glitch (Atlama) 
durumunu önlemeye 

yönelik tasarım
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10. ÖRNEK 
UYGULAMALAR

Architecture davranis of freq_div is 
Signal sayac_vek : std_logic_vector(3 downto 0) := (others => '0');
Begin 
  Process(clk, rst) 
  Begin 
       If rst='1' then 
             sayac_vek <= (others => '0'); 
             sigclk_2 <= '0';  
             sigclk_4 <= '0';  
             sigclk_8 <= '0';  
             sigclk_16 <= '0'; 
       Elsif rising_edge(clk) then 
             sayac_vek <= std_logic_vector(unsigned(sayac_vek) + 1); 
             sigclk_2 <= sayac_vek (0); -- f/2 
             sigclk_4 <= sayac_vek (1); -- f/4 
             sigclk_8 <= sayac_vek (2); -- f/8 
             sigclk_16 <= sayac_vek (3); -- f/16 
       End if; 
  End process; 
End davranis;

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Tasarım-2
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10. ÖRNEK UYGULAMALAR

Vivado / 
Simulation Çıktısı

Tasarım-2

Architecture davranis of freq_div is 
Signal sayac_vek : std_logic_vector(3 downto 0) := (others => '0'); 
Begin 
  Process(clk, rst) 
  Begin 
       If rst='1' then 
             sayac_vek <= (others => '0'); 
             sigclk_2 <= '0';  
             sigclk_4 <= '0';  
             sigclk_8 <= '0';  
             sigclk_16 <= '0'; 
       Elsif rising_edge(clk) then 
             sayac_vek <= std_logic_vector(unsigned(sayac_vek) + 1); 
             sigclk_2 <= sayac_vek (0); -- f/2 
             sigclk_4 <= sayac_vek (1); -- f/4 
             sigclk_8 <= sayac_vek (2); -- f/8 
             sigclk_16 <= sayac_vek (3); -- f/16 
       End if; 
  End process; 
End davranis; 
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SONRAKİ DERS KONUSU

11- HAFIZA İŞLEMLERİ



Ders sorumlusu:

Doç. Dr. Hasan KOYUNCU

1
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11. HAFIZA İŞLEMLERİ
 Hafıza birimleri; gelen veriyi tutmak, yine bu veriyi işletmek (başka
birimlere aktarmak) amacıyla sayısal tasarımlarda sıklıkla kullanılan
yapılardır.

 Bu noktada birçok sayısal sistem, veri tutma ve işleme opsiyonları
düşünülerek tasarlanır.

 Hafıza işlemlerinde 1-bitlik veri en yalın halde FF’ler üzerinde
tutulmaktadır.

 Hafıza birimleri ise FF birimleri üzerinden blok yapılar oluşturularak elde
edilir.

 ROM, PROM, EPROM, RAM vb. hafıza ünitelerinin en temel ortak paydası
adres yolu ve veri yolu kavramlarıdır.
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11. HAFIZA İŞLEMLERİ
Adres yolu bit sayısı / Adres bit sayısı (n), kaç farklı verinin (2n adet)
tutulabileceğini gösterir.

 Veri yolu bit sayısı / Veri bit sayısı (m) ise kaç bitlik bilgiler üzerinde
işlem yapılacağını nitelemektedir.

Bir hafıza birimindeki adres yolu ve veri yolu (uzunluğu) temel gösterimi 
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11.1 ROM (Okunabilir) Hafıza

 ROM birimi yalnızca okuma yapılabilen hafıza yapısıdır.

 Üretim esnasında doldurulan ve kolaylıkla değiştirilemeyen bir yapı
içermektedir. VHDL üzerinden ROM blok şeması aşağıda görüldüğü gibidir.

VHDL ile 2n × m ROM 
için hafıza şeması
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11.1 ROM (Okunabilir) Hafıza

 Buna göre; her “clk” tetiğinde “izin” girişi (kontrol edilir) lojik-1 ise
“adres” bilgisi okunarak, gerekli adresteki m-bitlik veri sistem çıkışına
aktarılır.

Aktarılan bu bilgi tasarım içi bir bölümde kullanılabilir veya genel bir
sistem çıkışı olarak atfedilebilir.

VHDL ile 2n × m ROM 
için hafıza şeması
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11.1 ROM (Okunabilir) Hafıza

 Sabit bilgilerin işletilmesi gerektiği birçok uygulamada ROM yapıları
kullanılır.

Mühendislikte karşılaşılan birçok yapıda sabit bilgi işletilmesi gerekir.

 Örneğin; alt ve üst sınır değerleri sabit olan 8 farklı parametreye dair sınır
bilgisinin saklanması ve iletilmesi.

VHDL ile 2n × m ROM 
için hafıza şeması
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11.1 ROM (Okunabilir) Hafıza

Not: izin girişi lojik-0 iken
veya rst girişi aktif iken, alt
ve ust isimli çıkış portlarına
gerekli bit sayısı kadar
yüksek empedans ataması
yapılacaktır.

Örnek 11.1: 8 adet
parametrenin alt ve üst sınır
değerleri şekilde görüldüğü
gibidir. Buna göre alt ve üst
değerler 8’er bit çıktı olmak
üzere, bu sınır değerleri 16
bit formda saklayan ve izin
girişine göre gerekli
adresteki bilgiyi alt ve ust
isimli çıkış portlarına clk
tetiği ile aktaran sayısal
devre için gerekli VHDL
kodunu yazınız.



8

11.1 ROM (Okunabilir) Hafıza

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.std_logic_arith.all; 
Use ieee.std_logic_unsigned.all; 
 
Entity Uyg_rom is  
Port (clk, rst, izin: in std_logic; 
         adres: in std_logic_vector(2 downto 0); 
         alt, ust: out std_logic_vector(7 downto 0)); 
End Uyg_rom; 

Tasarım-1



9

11.1 ROM 
(Okunabilir) 
Hafıza

Architecture davranis of Uyg_rom is 
type bellek_tipi is array (0 to 7) of std_logic_vector(15 downto 0);
constant rom_birimi: bellek_tipi := ( 
    0 => "0000010000001100", 
    1 => "0000001000010110", 
    2 => "0000000000001111", 
    3 => "1000001010010110", 
    4 => "0000000100101000", 
    5 => "0000010001001000", 
    6 => "0000101000100011", 
    7 => "0001011001010101"); 
Begin 
    Process (clk,rst) 
    Begin 
        If (rst= '1') then 
            alt <= (others=>'Z'); 
            ust <= (others=>'Z'); 
        Elsif rising_edge(clk) then 
            If izin= '1' then   
                alt <= rom_birimi(conv_integer(adres))(15 downto 8); 
                ust <= rom_birimi(conv_integer(adres))(7 downto 0); 
            Else 
                alt <= (others=>'Z'); 
                ust <= (others=>'Z'); 
            End if; 
        End if; 
   End process; 
End davranis; 
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11.1 ROM 
(Okunabilir) 
Hafıza

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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11.1 ROM (Okunabilir) Hafıza

Daha sade nasıl yazarız?

Hexadecimal format ile
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11.1 ROM 
(Okunabilir) 
Hafıza

Architecture davranis of Uyg_rom is 
type bellek_tipi is array (0 to 7) of std_logic_vector(15 downto 0); 
constant rom_birimi: bellek_tipi := (0 => x"040C", 1 => x"0216", 
2 => x"000F", 3 => x"8296", 4 => x"0128", 5 => x"0448", 6 => 
x"0A23", 7 => x"1655"); 
Begin 
    Process (clk,rst) 
    Begin 
        If (rst= '1') then 
            alt <= (others=>'Z'); 
            ust <= (others=>'Z'); 
        Elsif rising_edge(clk) then 
            If izin= '1' then   
                alt <= rom_birimi(conv_integer(adres))(15 downto 8); 
                ust <= rom_birimi(conv_integer(adres))(7 downto 0); 
            Else 
                alt <= (others=>'Z'); 
                ust <= (others=>'Z'); 
            End if; 
        End if; 
   End process; 
End davranis; 
 

Önceki örnekteki 
Library ve 

Entity bölümleri 
aynı kaldı. 

Yine aynı RTL 
şeması elde 

edilir.

Tasarım-2
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11.1 ROM (Okunabilir) Hafıza

Tasarım-3

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity Uyg_rom is  
Port (clk, rst, izin: in std_logic; 
         adres: in std_logic_vector(2 downto 0); 
         alt, ust: out std_logic_vector(7 downto 0)); 
End Uyg_rom; 
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11.1 ROM 
(Okunabilir) 
Hafıza

Architecture davranis of Uyg_rom is 
type bellek_tipi is array (0 to 7) of std_logic_vector(15 downto 0); 
constant rom_birimi: bellek_tipi := (0 => x"040C", 1 => x"0216", 2 => 
x"000F", 3 => x"8296", 4 => x"0128", 5 => x"0448", 6 => x"0A23",  
7 => x"1655"); 
Begin 
    Process (clk,rst) 
    Begin 
        If (rst= '1') then 
            alt <= (others=>'Z'); 
            ust <= (others=>'Z'); 
        Elsif rising_edge(clk) then 
            If izin= '1' then   
                alt <= rom_birimi(to_integer(unsigned(adres)))(15 downto 8); 
                ust <= rom_birimi(to_integer(unsigned(adres)))(7 downto 0); 
            Else 
                alt <= (others=>'Z'); 
                ust <= (others=>'Z'); 
            End if; 
        End if; 
   End process; 
End davranis; 
 

Tasarım-3
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11.1 ROM (Okunabilir) Hafıza

Tasarım-1 ve Tasarım-2’deki
RTL şemasının aynısı elde edildi.

Tasarım-3
Vivado / 

Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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11.2 RAM (Rasgele Erişimli) Hafıza

 RAM birimi, hem okuma hem de yazma yapılabilen hafıza yapısıdır.

 İçerisinde bilgi saklama hücreleri ile bu hücrelere veri aktarmak veya
bu hücrelerden verileri okumak amacıyla tasarlanmış devrelerden oluşur.

 Temel olarak bir hafıza ve okuma / yazma seçimi sağlayan kontrol
devresi RAM yapısını teşkil eder.

 Bilgiyi geçici olarak depolamaktadır.

Açılımındaki rasgele erişim ifadesi ise sıra gözetmeksizin istenilen adreste
okuma / yazma yapabilmesinden kaynaklıdır.
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11.2 RAM (Rasgele Erişimli) Hafıza

 VHDL üzerinden RAM blok şeması aşağıda görüldüğü gibidir.

Yapıya dair blok şemada görüldüğü üzere her “clk” tetiğinde “izin” girişi
lojik-1 ise “adres” ve “yaz_oku” bilgileri okunmaktadır.

VHDL dilinde RAM 
hafıza şeması
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11.2 RAM (Rasgele Erişimli) Hafıza

 Bu bilgilere göre gerekli adresteki m-bitlik veri okunabilmekte (sistem
çıkışına aktarılmakta)

 veya sistem girdisi gerekli adresteki m-bitlik veri yerine aktarılmaktadır
(yazılmaktadır).

VHDL dilinde RAM 
hafıza şeması
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11.2 RAM (Rasgele Erişimli) Hafıza

Örnek 11.2: 8 adet 4 bitlik verilerin bulunacağı (23x4) RAM bloğu
tasarlanacaktır.

- rst isimli giriş portu aktif olduğunda bütün RAM hafızası sıfırlanacaktır.

- clk isimli giriş port sinyalinin yükselen kenarında izin girişi kontrol
edilecek;

* lojik-0 ise cikis isimli çıkış portuna gerekli bit sayısı kadar yüksek
empedans ataması yapılacaktır.

* lojik-1 ise yaz_oku girdisine göre yazma veya okuma işlemi
gerçekleştirilecektir.

- Okuma için gerekli adresteki bilgiyi cikis isimli çıkış portuna, yazma için
ise giris_dat isimli giriş portundaki veriyi gerekli adrese yazan devre için
gerekli VHDL kodunu yazınız.

(Not: yaz_oku portunda giriş ‘0’ ise okuma, ‘1’ ise yazma işlemi yapılacaktır)
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11.2 RAM (Rasgele Erişimli) Hafıza

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.std_logic_arith.all; 
Use ieee.std_logic_unsigned.all; 
 
Entity Uyg_ram is  
Port (clk, rst, izin, yaz_oku: in std_logic; 
         adres: in std_logic_vector(2 downto 0); 
         giris_dat: in std_logic_vector(3 downto 0); 
         cikis: out std_logic_vector(3 downto 0)); 
End Uyg_ram; 

Tasarım-1
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11.2 RAM 
(Rasgele 
Erişimli) 
Hafıza

Tasarım-1

Architecture davranis of Uyg_ram is 
type bellek_tipi is array (0 to 7) of std_logic_vector(3 downto 0); 
signal ram_birimi: bellek_tipi; 
Begin 
    Process (clk, rst) 
    Begin 
        If (rst= '1') then 
            ram_birimi <= (others=> (others=> '0') ); 
        Elsif rising_edge(clk) then 
            If izin= '0' then   
                cikis <= (others=>'Z'); 
            Elsif (izin= '1') then 
                If yaz_oku = '0' then 
                    cikis <= ram_birimi(conv_integer(adres)); 
                Elsif yaz_oku = '1' then 
                    ram_birimi(conv_integer(adres)) <= giris_dat; 
                End if; 
            End if; 
        End if; 
   End process; 
End davranis; 
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11.2 RAM (Rasgele Erişimli) Hafıza
Vivado / 

Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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11.2 RAM (Rasgele Erişimli) Hafıza

Tasarım-2

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity Uyg_ram is  
Port (clk, rst, izin, yaz_oku: in std_logic; 
         adres: in std_logic_vector(2 downto 0); 
         giris_dat: in std_logic_vector(3 downto 0); 
         cikis: out std_logic_vector(3 downto 0)); 
End Uyg_ram; 
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11.2 RAM 
(Rasgele 
Erişimli) 
Hafıza

Tasarım-2

Architecture davranis of Uyg_ram is 
type bellek_tipi is array (0 to 7) of std_logic_vector(3 downto 0); 
signal ram_birimi: bellek_tipi; 
Begin 
    Process (clk, rst) 
    Begin 
        If (rst= '1') then 
            ram_birimi <= (others=> (others=> '0') ); 
        Elsif rising_edge(clk) then 
            If izin= '0' then   
                cikis <= (others=>'Z'); 
            Elsif (izin= '1') then 
                If yaz_oku = '0' then 
                    cikis <= ram_birimi(to_integer(unsigned(adres))); 
                Elsif yaz_oku = '1' then 
                    ram_birimi(to_integer(unsigned(adres))) <= giris_dat; 
                End if; 
            End if; 
        End if; 
   End process; 
End davranis; 
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11.2 RAM (Rasgele Erişimli) Hafıza
Vivado / 

Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Tasarım-1’deki
RTL şemasının 

aynısı elde 
edildi.
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12- SONLU DURUM MAKİNELERİ



Ders sorumlusu:

Doç. Dr. Hasan KOYUNCU

1
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 Sonlu durum makinesi (SDM); sonlu (sınırlı) sayıda durumdan, durumlar
arası geçişlerden ve eylemlerden meydana gelen otomatik sistem modelidir.

 Durum makineleri, VHDL kapsamında genel olarak ardışıl sistem
davranışlarını modellemek için kullanılır.

 SDM tipi tasarımlarda modellenecek ardışıl devre durumlara ayrılır ve bu
durumlar arası bağlantılar amaçlara uygun tanımlanır.

 Sayısal tasarım kapsamında farklı SDM modelleri mevcuttur.

 Bu modellerden iki tanesi sıklıkla kullanılır ve bu iki model birbirine
dönüştürülebilmektedir: 1-Moore SDM, 2- Mealy SDM.

12. SONLU DURUM MAKİNELERİ
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12. SONLU DURUM MAKİNELERİ
 SDM yapıları oluşturulurken graflar kullanılır.

Moore makinesi temelli 
tasarlanan çamaşır makinesi 

kontrol birimi şeması
Mealy makinesine göre 
tasarlanan satış otomatı 
kontrol birimi şeması
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12. SONLU DURUM MAKİNELERİ
Moore tipi makinelerde çıkış değerleri durumlara / düğümlere yazılırken,
okunan semboller kenarlar / geçişler üzerinde gösterilir.

Moore makinesi temelli 
tasarlanan çamaşır makinesi 

kontrol birimi şeması
Mealy makinesine göre 
tasarlanan satış otomatı 
kontrol birimi şeması
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12. SONLU DURUM MAKİNELERİ
 Mealy tipi makinelerde ise giriş / çıkış değerleri kenarlar üzerinde ifade
edilir.

Moore makinesi temelli 
tasarlanan çamaşır makinesi 

kontrol birimi şeması
Mealy makinesine göre 
tasarlanan satış otomatı 
kontrol birimi şeması



12. SONLU DURUM MAKİNELERİ
Moore ve Mealy makinelerinin farklılıkları şunlardır:

Moore makineleri daha kolay tasarlanır.

6Moore SDM Mealy SDM
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12. SONLU DURUM MAKİNELERİ
Moore ve Mealy makinelerinin farklılıkları şunlardır:

Mealy makineleri genelde daha az durum kümesi üzerinden tasarlanır.

Moore SDM Mealy SDM



12. SONLU DURUM MAKİNELERİ
Moore ve Mealy makinelerinin farklılıkları şunlardır:

Mealy makinesinde çıkışlar geçişlerde belirtilir.

8Moore SDM Mealy SDM



12. SONLU DURUM MAKİNELERİ
Moore ve Mealy makinelerinin farklılıkları şunlardır:

Moore makinesinde çıkışları görmek için makinenin anlık durumuna
bakmak gerekir.

9Moore SDM Mealy SDM



12. SONLU DURUM MAKİNELERİ
Moore ve Mealy makinelerinin farklılıkları şunlardır:

Mealy makinesinde birden fazla giriş / çıkış bağlantısı kolaylıkla
tanımlanabildiğinden çok karmaşık makine tasarımlarında kullanılırlar.

10Moore SDM Mealy SDM
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12.1 Durumların Tanımlanması

 Komplike ardışıl sistemlerde herbir tasarım evresi, SDM kapsamında ayrı
bir durum olarak ifade edilebilir.

Ardışıl devreler, şimdiki durum bilgisini kullanarak bir sonraki durumda
hangi işlemi yapacağını bilir.

 Tasarımcı tarafından bütün durumlar tespit edildikten sonra, durumları
birbirinden ayırt etmek için farklı ifadeler kullanılır.

 VHDL’ de farklı durumları ifade etmek için sıralı tür tanımlamasının
kullanılması gerekir.
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12.1 Durumların Tanımlanması

VHDL’ de farklı durumları ifade etmek için sıralı tür tanımlamasının
kullanılması gerekir.

 Şekildeki çamaşır makinesi kontrol devresinde gerekli durum için aşağıdaki
kod tanımlaması yapılabilir.

Type durumlar is (basla, yika, durula, skm);

Moore SDM
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12.2 Moore ve Mealy Makineleri

 Sentez aşamasında sıralı türdeki herbir duruma karşılık uygun sayılar verilir.

 Örneğin aşağıdaki şekilde, Moore SDM ile çamaşır makinesi kontrolünde
ifade edilen durumlara karşılık basla  “00”, yika  “01”, durula  “10”,
skm “11” şeklinde atama yapılabilir.

Moore SDM

 SDM analizinde şimdiki durumu muhafaza
etmek için yukarıda verilen sıralı tür tipinde
sinyal tanımlaması yapılır.

Type durumlar is (basla, yika, durula, skm);
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12.2 Moore ve Mealy Makineleri

 Sentez aşamasında sıralı türdeki herbir duruma karşılık uygun sayılar verilir.

 Örneğin aşağıdaki şekilde, Moore SDM ile çamaşır makinesi kontrolünde
ifade edilen durumlara karşılık basla  “00”, yika  “01”, durula  “10”,
skm “11” şeklinde atama yapılabilir.

Moore SDM

 Durumlar içinde başlangıç durumu
(makinenin ilk durumu), sinyale ilk değer
ataması olarak aktarılabilir.

Signal simdi_d: durumlar := basla;
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12.2 Moore ve Mealy Makineleri

 Şekil incelendiğinde, çamaşır makinesine dair 4 farklı çalışma durumu ve bu
durumlar arası geçişleri gösteren 5 farklı ok bulunduğu görülür.

 İlk durum olan “başla” durumu, boşluktan gelen bir ok ile
yetkilendirilmiştir.

Moore SDM

 “Sıkma” durumu makine için son durumu
göstermektedir.

 Geçişler üzerindeki harfler (y,d,s), bir
durumdan diğerine geçme için işletilen
komutlardır.
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12.2 Moore ve Mealy Makineleri

 Durumları ve geçiş komutları bilinen bir SDM analizinde durum-geçiş
tablosu’ nun oluşturulması hem diyagramın analizinde hem de kod
aktarımında kolaylık sağlamaktadır.

Aşağıdaki tablo, şekildeki çamaşır makinesi kontrol diyagramı için üretilen
durum-geçiş tablosunu göstermektedir.

Moore SDM

Çamaşır makinesi kontrolü için 
durum-geçiş tablosu

Şimdiki Durum Geçiş Komutu Yeni Durum 

Başla y – "00" Yıka 
Başla d – "01" Durula 
Başla s – "10" Sıkma 
Yıka d – "01" Durula 

Durula s – "10" Sıkma 

Gerekli ise 
Çıkışlar sütunu 

eklenebilir.
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12.2 Moore ve Mealy Makineleri

 Tablo incelenirse tasarlanan SDM, “yds”, “ds” ve “s” kontrol kelimelerini
kavrayabilmektedir.

 VHDL’de bulunulan durumları ifade etmek için saklayıcı kullanılır.

Moore SDM

Çamaşır makinesi kontrolü için 
durum-geçiş tablosu

Şimdiki Durum Geçiş Komutu Yeni Durum 

Başla y – "00" Yıka 
Başla d – "01" Durula 
Başla s – "10" Sıkma 
Yıka d – "01" Durula 

Durula s – "10" Sıkma 
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12.2 Moore ve Mealy Makineleri

 Burada “n” gerekli hafıza birimi sayısı olmak üzere, “2n ≥ durum sayısı”
kuralına göre işlem yapılır.

Yine main VHDL kodunda, ardışıl kontrollerin sağlanabilmesi için en az bir
adet process bloğu kullanılması gerekir.

Moore SDM

Çamaşır makinesi kontrolü için 
durum-geçiş tablosu

Şimdiki Durum Geçiş Komutu Yeni Durum 

Başla y – "00" Yıka 
Başla d – "01" Durula 
Başla s – "10" Sıkma 
Yıka d – "01" Durula 

Durula s – "10" Sıkma 
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12.2 Moore ve Mealy Makineleri

 Şekil için gerekli VHDL kodunu yazalım. Bu aşamada herbir durum alttaki
komut ile tanımlanır. İkinci komut ile de şimdiki duruma ilk değer ataması
yapılır.

1- Type durumlar is (basla, yika, durula, skm);

2- Signal simdi_d: durumlar := basla;

Moore SDM

Çamaşır makinesi kontrolü için 
durum-geçiş tablosu

Şimdiki Durum Geçiş Komutu Yeni Durum 

Başla y – "00" Yıka 
Başla d – "01" Durula 
Başla s – "10" Sıkma 
Yıka d – "01" Durula 

Durula s – "10" Sıkma 
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12.2 Moore ve Mealy Makineleri

 Bu örnekte durumların herbirisi ayrı bir çıkış olarak görülebilir ve bu olayda
Moore makinesi kullanmak kolaylık sağlar.

 Durumlar arası geçiş için “y,d,s” kontrol kelimelerinden birinin kullanılması
gereklidir.

Moore SDM

 Bu kelimelerin toplam sayısı 3 olduğundan
iki bit giriş üzerinden kodlamaları yapılabilir.

 Buna göre; “y” için “00”, “d” için “01” ve
“s” için “10” ikili değerlerine göre kod
yazılabilir.

2n ≥ giriş sayısı
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12.2 Moore ve Mealy Makineleri

 Clk sinyalinin yükselen kenarında iki bitlik “giris” isimli giriş port bilgisi
okunacak, sonrasında şimdiki durum sinyaline yeni durum ataması
yapılacaktır.

 Sistem çıkışı ise ‘0’ (başla, yıka, durula) veya ‘1’ (sıkma) seviyelerine sahip
olacaktır.

Moore SDM
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Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity camasir_sdm is  
Port (clk : in std_logic; 
          giris : in std_logic_vector(1 downto 0); 
          cikis : out std_logic); 
End camasir_sdm; 
 
Architecture davranis of  camasir_sdm is 
Type durumlar is (basla, yika, durula, skm); 
Signal simdiki_d: durumlar := basla; 
Begin 

12.2 Moore ve Mealy Makineleri
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12.2 Moore ve 
Mealy Makineleri

   Process (clk)
    Begin 
        If rising_edge(clk) then 
            Case simdiki_d is  -- “y” için "00", “d” için "01" ve “s” için "10" 
                When basla => 
                    If (giris="00") then 
                        cikis <= '0'; 
                        simdiki_d <= yika; 
                    Elsif (giris="01") then 
                        cikis <= '0'; 
                        simdiki_d <= durula; 
                    Elsif (giris="10") then 
                        cikis <= '0'; 
                         simdiki_d <= skm; 
                    End if; 
                When yika => 
                    If (giris="01") then 
                        cikis <= '0'; 
                         simdiki_d <= durula; 
                    End if; 
                When durula => 
                    If (giris="10") then 
                        cikis <= '0'; 
                        simdiki_d <= skm; 
                    End if; 
                When skm => 
                        cikis <= '1'; 
            End case; 
       End if; 
    End process; 
End davranis; 
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12.2 Moore ve 
Mealy Makineleri

Moore SDM

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Çamaşır makinesi kontrolü için durum-geçiş tablosu

Şimdiki Durum Geçiş Komutu Yeni Durum 

Başla y – "00" Yıka 
Başla d – "01" Durula 
Başla s – "10" Sıkma 
Yıka d – "01" Durula 

Durula s – "10" Sıkma 
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12.2 Moore ve Mealy Makineleri

• Şekildeki SDM yapısına dair gerekli VHDL kodunu Mealy SDM ile yazalım.
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12.2 Moore ve Mealy Makineleri

Şimdiki Durum Geçiş Komutu / Giriş Yeni Durum Çıkış 

s0 25kuruş – '0' s25 0 
s0 50kuruş – '1' s50 0 

s25 25kuruş – '0' s50 0 
s25 50kuruş – '1' s75 0 
s50 25kuruş – '0' s75 0 
s50 50kuruş – '1' s0 1 
s75 25kuruş – '0' s0 1 
s75 50kuruş – '1' s25 1 

Satış otomat kontrolü için 
durum-geçiş tablosu
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12.2 Moore ve Mealy Makineleri

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity  satis_sdm is  
Port (clk : in std_logic; 
          giris : in std_logic; 
          cikis : out std_logic); 
End  satis_sdm; 
 
Architecture davranis of satis_sdm is 
Type durumlar is (s0, s25, s50, s75); 
Signal simdiki_d: durumlar := s0; 
Begin 
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12.2 Moore ve 
Mealy Makineleri

   Process (clk) 
    Begin 
        If  rising_edge(clk) then 
            Case simdiki_d is  -- “25 Kuruş” için '0', “50 Kuruş” için '1' 
                When s0 => 
                    If (giris='0') then 
                        cikis <= '0'; 
                        simdiki_d <= s25; 
                    Elsif (giris='1') then 
                        cikis <= '0'; 
                        simdiki_d <= s50; 
                    End if; 
                When s25 => 
                    If (giris='0') then 
                        cikis <= '0'; 
                        simdiki_d <= s50; 
                    Elsif (giris='1') then 
                        cikis <= '0'; 
                        simdiki_d <= s75; 
                    End if; 
                When s50 => 
                    If (giris='0') then 
                        cikis <= '0'; 
                        simdiki_d <= s75; 
                    Elsif (giris='1') then 
                        cikis <= '1'; 
                        simdiki_d <= s0; 
                    End if;  
                When s75 => 
                    If (giris='0') then 
                        cikis <= '1'; 
                        simdiki_d <= s0; 
                    Elsif (giris='1') then 
                        cikis <= '1'; 
                        simdiki_d <= s25; 
                    End if; 
            End case; 
       End if; 
    End process; 
End davranis; 

    Process (clk) 
    Begin 
        If  rising_edge(clk) then 
            Case simdiki_d is  -- “25 Kuruş”
                When s0 => 
                    If (giris='0') then 
                        cikis <= '0'; 
                        simdiki_d <= s25; 
                    Elsif (giris='1') then 
                        cikis <= '0'; 
                        simdiki_d <= s50; 
                    End if; 
                When s25 => 
                    If (giris='0') then 
                        cikis <= '0'; 
                        simdiki_d <= s50; 
                    Elsif (giris='1') then 
                        cikis <= '0'; 
                        simdiki_d <= s75; 
                    End if; 
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12.2 Moore ve 
Mealy Makineleri

   Process (clk) 
    Begin 
        If  rising_edge(clk) then 
            Case simdiki_d is  -- “25 Kuruş” için '0', “50 Kuruş” için '1' 
                When s0 => 
                    If (giris='0') then 
                        cikis <= '0'; 
                        simdiki_d <= s25; 
                    Elsif (giris='1') then 
                        cikis <= '0'; 
                        simdiki_d <= s50; 
                    End if; 
                When s25 => 
                    If (giris='0') then 
                        cikis <= '0'; 
                        simdiki_d <= s50; 
                    Elsif (giris='1') then 
                        cikis <= '0'; 
                        simdiki_d <= s75; 
                    End if; 
                When s50 => 
                    If (giris='0') then 
                        cikis <= '0'; 
                        simdiki_d <= s75; 
                    Elsif (giris='1') then 
                        cikis <= '1'; 
                        simdiki_d <= s0; 
                    End if;  
                When s75 => 
                    If (giris='0') then 
                        cikis <= '1'; 
                        simdiki_d <= s0; 
                    Elsif (giris='1') then 
                        cikis <= '1'; 
                        simdiki_d <= s25; 
                    End if; 
            End case; 
       End if; 
    End process; 
End davranis; 

                When s50 =>
                    If (giris='0') then 
                        cikis <= '0'; 
                        simdiki_d <= s75; 
                    Elsif (giris='1') then 
                        cikis <= '1'; 
                        simdiki_d <= s0; 
                    End if;  
                When s75 => 
                    If (giris='0') then 
                        cikis <= '1'; 
                        simdiki_d <= s0; 
                    Elsif (giris='1') then 
                        cikis <= '1'; 
                        simdiki_d <= s25; 
                    End if; 
            End case; 
       End if; 
    End process; 
End davranis; 
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12.2 Moore ve 
Mealy Makineleri

Şimdiki Durum Geçiş Komutu / Giriş Yeni Durum Çıkış 

s0 25kuruş – '0' s25 0 
s0 50kuruş – '1' s50 0 
s25 25kuruş – '0' s50 0 
s25 50kuruş – '1' s75 0 
s50 25kuruş – '0' s75 0 
s50 50kuruş – '1' s0 1 
s75 25kuruş – '0' s0 1 
s75 50kuruş – '1' s25 1 

Mealy SDM

Satış otomat kontrolü için durum-geçiş tablosu

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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13- ÖRNEK UYGULAMALAR (EK)

SONRAKİ DERS KONUSU



Ders sorumlusu:

Doç. Dr. Hasan KOYUNCU
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2

13. ÖRNEK UYGULAMALAR (EK)
Örnek 13.1: Sıvı seviye kontrolü için;

- 8 bitlik girdi isimli giriş port sinyali işlenerek, pompa isimli çıkış portuna
pompanın çalışması için ‘1’, durması için ‘0’ seviyeleri gönderilecektir.

- Sıvı seviyesinin, maksimum seviye (250) ve minimum seviye (20) arası değerler
alabileceği bilinmektedir.

- rst giriş port sinyali ‘1’
olduğunda pompa durdurulacak,
clk giriş port sinyalinin
yükselen kenarında bilgiler
işlenerek pompaya gerekli çıkış
iletilecektir.

Tasarım için gerekli VHDL
kodunu yazınız.
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13. ÖRNEK UYGULAMALAR (EK)
Örnek 13.1: Sıvı seviye kontrolü için gerekli VHDL kodunu yazınız.

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity seviye_kontrol is  
Port (clk, rst : in std_logic; 
          seviye : in std_logic_vector (7 downto 0); 
          pompa: out std_logic); 
End  seviye_kontrol; 



4

13. ÖRNEK UYGULAMALAR (EK)

Örnek 13.1: Sıvı seviye kontrolü için gerekli
VHDL kodunu yazınız.

Architecture davranis of seviye_kontrol is
Constant low_level:  std_logic_vector := "00010100"; --değer karşılığı 20   
Constant high_level:  std_logic_vector := "11111010"; --değer karşılığı 250 
Begin 
    Process (rst, clk) 
    Begin 
        If rst='1' then 
             pompa <= '0'; 
        Elsif rising_edge(clk) then 
             If ( seviye <= low_level ) then 
                 pompa <= '1'; 
             Elsif (  seviye  >= high_level ) then 
                 pompa <= '0'; 
            End if; 
        End if; 
    End process; 
End davranis; 
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13. ÖRNEK UYGULAMALAR (EK)

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Architecture davranis of seviye_kontrol is
Constant low_level:  std_logic_vector := "00010100"; 
Constant high_level:  std_logic_vector := "11111010";
Begin 
    Process (rst, clk) 
    Begin 
        If rst='1' then 
             pompa <= '0'; 
        Elsif rising_edge(clk) then 
             If ( seviye <= low_level ) then 
                 pompa <= '1'; 
             Elsif (  seviye  >= high_level ) then 
                 pompa <= '0'; 
            End if; 
        End if; 
    End process; 
End davranis; 
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13. ÖRNEK UYGULAMALAR (EK)

Vivado / 
Simulation Çıktısı

Library ieee; 
Use ieee.std_logic_1164.all; 
 
Entity seviye_kontrol is  
Port (clk, rst : in std_logic; 
          seviye : in std_logic_vector (7 downto 0); 
          pompa: out std_logic); 
End  seviye_kontrol; 
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13. ÖRNEK UYGULAMALAR (EK)
Örnek 13.2: Bir otoparkta boş park yeri sayısını belirtmek için;

- 1’er bitlik giris_sen ve cikis_sen isimli sensör girişleri (giriş port sinyalleri)
sırasıyla giren araç ve çıkan araç için işlenerek, yer_bilgisi isimli çıkış portuna
otopark içi araç sayısı (ikili) aktarılacaktır.

- rst giriş port sinyali ‘1’ olduğunda araç sayı bilgisi birlenecek (otopark tamamen
boş, 255 boş yer var), clk giriş port sinyalinin yükselen kenarında bilgiler işlenerek
gerekli sayı çıkışı üretilecektir.

Tasarım için gerekli VHDL
kodunu yazınız.
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13. ÖRNEK UYGULAMALAR (EK)
Örnek 13.2: Park yeri kontrolü için gerekli VHDL kodunu yazınız.

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity park_yeri is  
Port (clk, rst, giris_sen, cikis_sen : in std_logic; 
          yer_bilgisi: out std_logic_vector (7 downto 0)); 
End park_yeri; 
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13. ÖRNEK UYGULAMALAR (EK)

Örnek 13.2: Park 
yeri kontrolü için 

gerekli VHDL 
kodunu yazınız.

Architecture davranis of park_yeri is 
Signal yer_sayici:  unsigned (7 downto 0) := (others =>'1'); 
Signal giris_vek, cikis_vek:  unsigned (3 downto 0) := (others =>'0');  
Constant max_deg: unsigned (7 downto 0) := (others =>'1');  -- 255 araç için 
Begin 
    Process (rst, clk) 
    Begin 
        If rst='1' then 
             yer_sayici <=  (others =>'1'); 
        Elsif rising_edge(clk) then 
            giris_vek <= giris_vek(2 downto 0) & giris_sen; 
            cikis_vek <= cikis_vek(2 downto 0) & cikis_sen; 
            -- Araç hem girer hem de çıkarsa boş yer sayısı değişmez 
            If giris_vek = "1100" and cikis_vek = "1100" then 
                 yer_sayici <=  yer_sayici;  
            -- Araç girerse boş yer azalır 
            Elsif giris_vek = "1100"  and yer_sayici > "00000000" then 
                 yer_sayici <=  yer_sayici - 1;  
            -- Araç çıkarsa boş yer artar 
            Elsif cikis_vek = "1100" and yer_sayici < max_deg then 
                 yer_sayici <= yer_sayici + 1;  
            End if; 
        End if; 
    End process; 
    yer_bilgisi <= std_logic_vector (yer_sayici); 
End davranis; 

to_unsigned(0,8)

Aynı
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13. ÖRNEK UYGULAMALAR (EK)

Vivado / 
Elaborated Design Çıktısı
(RTL Şematik Diyagramı)

Architecture davranis of park_yeri is 
Signal yer_sayici:  unsigned (7 downto 0) := (others =>'1'); 
Signal giris_vek, cikis_vek:  unsigned (3 downto 0) := (others =>'0');  
Constant max_deg: unsigned (7 downto 0) := (others =>'1');  -- 255 araç için 
Begin 
    Process (rst, clk) 
    Begin 
        If rst='1' then 
             yer_sayici <=  (others =>'1'); 
        Elsif rising_edge(clk) then 
            giris_vek <= giris_vek(2 downto 0) & giris_sen; 
            cikis_vek <= cikis_vek(2 downto 0) & cikis_sen; 
            -- Araç hem girer hem de çıkarsa boş yer sayısı değişmez 
            If giris_vek = "1100" and cikis_vek = "1100" then 
                 yer_sayici <=  yer_sayici;  
            -- Araç girerse boş yer azalır 
            Elsif giris_vek = "1100"  and yer_sayici > "00000000" then 
                 yer_sayici <=  yer_sayici - 1;  
            -- Araç çıkarsa boş yer artar 
            Elsif cikis_vek = "1100" and yer_sayici < max_deg then 
                 yer_sayici <= yer_sayici + 1;  
            End if; 
        End if; 
    End process; 
    yer_bilgisi <= std_logic_vector (yer_sayici); 
End davranis;
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13. ÖRNEK UYGULAMALAR (EK)
Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity park_yeri is  
Port (clk, rst, giris_sen, cikis_sen : in std_logic; 
          yer_bilgisi: out std_logic_vector (7 downto 0)); 
End park_yeri; 

Vivado / 
Simulation Çıktısı
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13. ÖRNEK UYGULAMALAR (EK)
Örnek 13.3: Bir trafik lambasındaki renk değişimi için;

- 30 saniye kırmızı, 5 saniye sarı ve 30 saniye yeşil yanması
sağlanacaktır.

- rst giriş port sinyali ‘1’ olduğunda ışık kırmızıya dönmelidir.

- clk giriş port sinyalinin yükselen kenarında ise gerekli işlemlerin yapılarak red,

yellow ve green isimli 1’er bitlik çıkış portlarına gerekli yetkilendirme

sağlanacaktır.

Tasarım için gerekli VHDL
kodunu yazınız.
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13. ÖRNEK UYGULAMALAR (EK)
Örnek 13.3: Bir trafik lambasındaki renk değişimi için gerekli VHDL kodunu
yazınız.

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity  trafik_kontrol is  
Port (clk, rst : in std_logic; 
          red,  yellow, green: out std_logic); 
End trafik_kontrol; 
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Örnek 13.3: Bir trafik
lambasındaki renk değişimi
için gerekli VHDL kodunu
yazınız.

13. ÖRNEK 
UYGULAMALAR (EK)

Architecture davranis of trafik_kontrol is
Type durumlar is (red_state, yellow_state, green_state); 
Signal simdiki_d, gelecek_d: durumlar; 
Signal sayici: integer range 0 to 31:= 0; 
Signal geri: std_logic := '0'; 
-- süreler clk periyodu 1sn için ayarlı 
Constant red_sure: integer:= 30;  
Constant yellow_sure: integer:= 5; 
Constant green_sure: integer:= 30; 
Begin 
 
    Process (rst, clk) 
    Begin 
        If  rst='1' then 
            sayici <= 0; 
            simdiki_d <= red_state; 
        Elsif rising_edge(clk) then 
            sayici <= sayici + 1; 
            simdiki_d <= gelecek_d; -- gelecek durum diğer processten geliyor 
            -- Durum geçişlerinde sayaç sıfırlama 
            If (simdiki_d = red_state and sayici = red_sure) or 
                (simdiki_d = yellow_state and sayici = yellow_sure) or 
                (simdiki_d = green_state and sayici = green_sure) then 
                sayici <= 0; 
            End if; 
            -- Geri sinyali güncelleme 
            If (simdiki_d = green_state and sayici = green_sure) then 
                geri <= '1'; 
            Elsif (simdiki_d = red_state and sayici = red_sure) then 
                geri <= '0'; 
            End if; 
        End if; 
    End process; 
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Örnek 13.3: Bir trafik
lambasındaki renk değişimi
için gerekli VHDL kodunu
yazınız.

   Process (simdiki_d, sayici)  -- ürettiği çıktı gelecek_d ve gerekli renk
    Begin 
            red <= '0'; yellow <= '0'; green <= '0'; 
            Case simdiki_d is 
 -- /////////////////////////////////////////////////////////////// -- 
                When red_state => 
                    red <= '1'; 
                    If (sayici = red_sure) then 
                        gelecek_d <= yellow_state; 
                    Else 
                        gelecek_d <= red_state; 
                    End if; 
-- /////////////////////////////////////////////////////////////// -- 
                When yellow_state => 
                    yellow <= '1'; 
                    If (sayici = yellow_sure) then 
                        If (geri='0') then 
                            gelecek_d <= green_state; 
                        Else  
                            gelecek_d <= red_state; 
                        End if; 
                    Else 
                        gelecek_d <= yellow_state; 
                    End if; 
-- /////////////////////////////////////////////////////////////// -- 
                When green_state => 
                    green <= '1'; 
                    If (sayici = green_sure) then 
                        gelecek_d <= yellow_state; 
                    Else 
                        gelecek_d <= green_state; 
                    End if; 
            End case; 
    End process; 
End davranis; 

13. ÖRNEK 
UYGULAMALAR (EK)
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    Process (simdiki_d, sayici)  -- ürettiği çıktı gelecek_d ve gerekli renk 
    Begin 
            red <= '0'; yellow <= '0'; green <= '0'; 
            Case simdiki_d is 
 -- /////////////////////////////////////////////////////////////// -- 
                When red_state => 
                    red <= '1'; 
                    If (sayici = red_sure) then 
                        gelecek_d <= yellow_state; 
                    Else 
                        gelecek_d <= red_state; 
                    End if;

13. ÖRNEK 
UYGULAMALAR (EK)

Örnek 13.3: Bir trafik lambasındaki renk
değişimi için gerekli VHDL kodunu yazınız.
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-- /////////////////////////////////////////////////////////////// --
                When yellow_state => 
                    yellow <= '1'; 
                    If (sayici = yellow_sure) then 
                        If (geri='0') then 
                            gelecek_d <= green_state; 
                        Else  
                            gelecek_d <= red_state; 
                        End if; 
                    Else 
                        gelecek_d <= yellow_state; 

End if;

13. ÖRNEK 
UYGULAMALAR (EK)

Örnek 13.3: Bir trafik lambasındaki renk
değişimi için gerekli VHDL kodunu yazınız.



18

-- /////////////////////////////////////////////////////////////// --
                When green_state => 
                    green <= '1'; 
                    If (sayici = green_sure) then 
                        gelecek_d <= yellow_state; 
                    Else 
                        gelecek_d <= green_state; 
                    End if; 
            End case; 
    End process; 
End davranis; 

13. ÖRNEK 
UYGULAMALAR (EK)

Örnek 13.3: Bir trafik lambasındaki renk
değişimi için gerekli VHDL kodunu yazınız.
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13. ÖRNEK UYGULAMALAR (EK)
Vivado / 

Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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13. ÖRNEK UYGULAMALAR (EK)
Vivado / 

Elaborated Design Çıktısı
(RTL Şematik Diyagramı)
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13. ÖRNEK UYGULAMALAR (EK)

Vivado / 
Simulation Çıktıları

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.numeric_std.all; 
 
Entity  trafik_kontrol is  
Port (clk, rst : in std_logic; 
          red,  yellow, green: out std_logic); 
End trafik_kontrol; 
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FINISH
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